These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 30483

  • 1. Erythrocyte membrane potentials determined by hydrogen ion distribution.
    Macey RI, Adorante JS, Orme FW.
    Biochim Biophys Acta; 1978 Sep 22; 512(2):284-95. PubMed ID: 30483
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Steady-state and transient membrane potentials in human red cells determined by protonophore-mediated pH changes.
    Bennekou P.
    J Membr Biol; 1988 Nov 22; 106(1):41-6. PubMed ID: 3225839
    [Abstract] [Full Text] [Related]

  • 4. Identification of the structural elements of amphotericin B and other polyene macrolide antibiotics of the hepteane group influencing the ionic selectivity of the permeability pathways formed in the red cell membrane.
    Cybulska B, Bolard J, Seksek O, Czerwinski A, Borowski E.
    Biochim Biophys Acta; 1995 Dec 13; 1240(2):167-78. PubMed ID: 8541288
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Protonophore anion permeability of the human red cell membrane determined in the presence of valinomycin.
    Bennekou P.
    J Membr Biol; 1988 Jun 13; 102(3):225-34. PubMed ID: 3172181
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Mechanisms for passive calcium transport in human red cells.
    Szász I, Sarkadi B, Gárdos G.
    Acta Biochim Biophys Acad Sci Hung; 1978 Jun 13; 13(4):239-42. PubMed ID: 755323
    [No Abstract] [Full Text] [Related]

  • 11. Membrane potential and human erythrocyte shape.
    Gedde MM, Huestis WH.
    Biophys J; 1997 Mar 13; 72(3):1220-33. PubMed ID: 9138568
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Difluorophosphate as a 19F NMR probe of erythrocyte membrane potential.
    Xu AS, Kuchel PW.
    Eur Biophys J; 1991 Mar 13; 19(6):327-34. PubMed ID: 1915159
    [Abstract] [Full Text] [Related]

  • 14. Cytoplasmic pH and human erythrocyte shape.
    Gedde MM, Davis DK, Huestis WH.
    Biophys J; 1997 Mar 13; 72(3):1234-46. PubMed ID: 9138569
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Hypophosphite ion as a 31P nuclear magnetic resonance probe of membrane potential in erythrocyte suspensions.
    Kirk K, Kuchel PW, Labotka RJ.
    Biophys J; 1988 Aug 13; 54(2):241-7. PubMed ID: 3207824
    [Abstract] [Full Text] [Related]

  • 17. Calcium-induced oscillations in K+ conductance and membrane potential of human erythrocytes mediated by the ionophore A23187.
    Vestergaard-Bogind B, Bennekou P.
    Biochim Biophys Acta; 1982 May 21; 688(1):37-44. PubMed ID: 6284234
    [Abstract] [Full Text] [Related]

  • 18. [Electrical breakdown of erythrocyte membranes attributed to the diffusion potential difference].
    Putvinskiĭ AV, Popov SA, Puchkova TV, Danilov IuA, Vladimirov IuA.
    Biofizika; 1983 May 21; 28(3):505-6. PubMed ID: 6871275
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Light-induced changes of the pH gradient and the membrane potential in H. halobium.
    Michel H, Oesterhelt D.
    FEBS Lett; 1976 Jun 01; 65(2):175-8. PubMed ID: 6333
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.