These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


390 related items for PubMed ID: 30506213

  • 1. Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI.
    Kocak B, Durmaz ES, Kadioglu P, Polat Korkmaz O, Comunoglu N, Tanriover N, Kocer N, Islak C, Kizilkilic O.
    Eur Radiol; 2019 Jun; 29(6):2731-2739. PubMed ID: 30506213
    [Abstract] [Full Text] [Related]

  • 2. Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI.
    Zeynalova A, Kocak B, Durmaz ES, Comunoglu N, Ozcan K, Ozcan G, Turk O, Tanriover N, Kocer N, Kizilkilic O, Islak C.
    Neuroradiology; 2019 Jul; 61(7):767-774. PubMed ID: 31011772
    [Abstract] [Full Text] [Related]

  • 3. T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly.
    Potorac I, Petrossians P, Daly AF, Alexopoulou O, Borot S, Sahnoun-Fathallah M, Castinetti F, Devuyst F, Jaffrain-Rea ML, Briet C, Luca F, Lapoirie M, Zoicas F, Simoneau I, Diallo AM, Muhammad A, Kelestimur F, Nazzari E, Centeno RG, Webb SM, Nunes ML, Hana V, Pascal-Vigneron V, Ilovayskaya I, Nasybullina F, Achir S, Ferone D, Neggers SJ, Delemer B, Petit JM, Schöfl C, Raverot G, Goichot B, Rodien P, Corvilain B, Brue T, Schillo F, Tshibanda L, Maiter D, Bonneville JF, Beckers A.
    Endocr Relat Cancer; 2016 Nov; 23(11):871-881. PubMed ID: 27649724
    [Abstract] [Full Text] [Related]

  • 4. Intensity of pituitary adenoma on T2-weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly.
    Heck A, Ringstad G, Fougner SL, Casar-Borota O, Nome T, Ramm-Pettersen J, Bollerslev J.
    Clin Endocrinol (Oxf); 2012 Jul; 77(1):72-8. PubMed ID: 22066905
    [Abstract] [Full Text] [Related]

  • 5. Quantitative analyses of T2-weighted MRI as a potential marker for response to somatostatin analogs in newly diagnosed acromegaly.
    Heck A, Emblem KE, Casar-Borota O, Bollerslev J, Ringstad G.
    Endocrine; 2016 May; 52(2):333-43. PubMed ID: 26475495
    [Abstract] [Full Text] [Related]

  • 6. Predictive value of T2 relative signal intensity for response to somatostatin analogs in newly diagnosed acromegaly.
    Shen M, Zhang Q, Liu W, Wang M, Zhu J, Ma Z, He W, Li S, Shou X, Li Y, Zhang Z, Ye H, He M, Lu B, Yao Z, Lu Y, Qiao N, Ye Z, Zhang Y, Yang Y, Zhao Y, Wang Y.
    Neuroradiology; 2016 Nov; 58(11):1057-1065. PubMed ID: 27516099
    [Abstract] [Full Text] [Related]

  • 7. Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas.
    Park YW, Kang Y, Ahn SS, Ku CR, Kim EH, Kim SH, Lee EJ, Kim SH, Lee SK.
    Pituitary; 2020 Dec; 23(6):691-700. PubMed ID: 32851505
    [Abstract] [Full Text] [Related]

  • 8. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B, Durmaz ES, Ates E, Sel I, Turgut Gunes S, Kaya OK, Zeynalova A, Kilickesmez O.
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [Abstract] [Full Text] [Related]

  • 9. MRI texture analysis in acromegaly and its role in predicting response to somatostatin receptor ligands.
    Galm BP, Buckless C, Swearingen B, Torriani M, Klibanski A, Bredella MA, Tritos NA.
    Pituitary; 2020 Jun; 23(3):212-222. PubMed ID: 31897778
    [Abstract] [Full Text] [Related]

  • 10. Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning.
    Ugga L, Cuocolo R, Solari D, Guadagno E, D'Amico A, Somma T, Cappabianca P, Del Basso de Caro ML, Cavallo LM, Brunetti A.
    Neuroradiology; 2019 Dec; 61(12):1365-1373. PubMed ID: 31375883
    [Abstract] [Full Text] [Related]

  • 11. Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI.
    Cuocolo R, Ugga L, Solari D, Corvino S, D'Amico A, Russo D, Cappabianca P, Cavallo LM, Elefante A.
    Neuroradiology; 2020 Dec; 62(12):1649-1656. PubMed ID: 32705290
    [Abstract] [Full Text] [Related]

  • 12. [Outcome of somatostatin analogue treatment in acromegaly].
    Mondok A, Tóth M, Patócs A, Szücs N, Igaz P, Pusztai P, Czirják S, Beko G, Gláz E, Rácz K, Tulassay Z.
    Orv Hetil; 2009 Aug 02; 150(31):1457-62. PubMed ID: 19617182
    [Abstract] [Full Text] [Related]

  • 13. The value of an acute octreotide suppression test in predicting short-term efficacy of somatostatin analogues in acromegaly.
    Wang M, Shen M, He W, Yang Y, Liu W, Lu Y, Ma Z, Ye Z, Zhang Y, Zhao X, Lu B, Hu J, Huang Y, Shou X, Wang Y, Ye H, Li Y, Li S, Zhao Y, Zhang Z.
    Endocr J; 2016 Sep 30; 63(9):819-834. PubMed ID: 27432816
    [Abstract] [Full Text] [Related]

  • 14. Surgical debulking of pituitary macroadenomas causing acromegaly improves control by lanreotide.
    Karavitaki N, Turner HE, Adams CB, Cudlip S, Byrne JV, Fazal-Sanderson V, Rowlers S, Trainer PJ, Wass JA.
    Clin Endocrinol (Oxf); 2008 Jun 30; 68(6):970-5. PubMed ID: 18031313
    [Abstract] [Full Text] [Related]

  • 15. Added Value of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Predicting Response to Somatostatin Analogs in Acromegaly Patients.
    Durmaz ES, Kocak B, Kadioglu P, Comunoglu N, Ulu MO, Kocer N, Islak C, Kizilkilic O.
    Turk Neurosurg; 2019 Jun 30; 29(6):835-842. PubMed ID: 30900736
    [Abstract] [Full Text] [Related]

  • 16. Pituitary magnetic resonance imaging predictive role in the therapeutic response of growth hormone-secreting pituitary adenomas.
    Tortora F, Negro A, Grasso LFS, Colao A, Pivonello R, Splendiani A, Brunese L, Caranci F.
    Gland Surg; 2019 Sep 30; 8(Suppl 3):S150-S158. PubMed ID: 31559182
    [Abstract] [Full Text] [Related]

  • 17. A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging.
    Peng A, Dai H, Duan H, Chen Y, Huang J, Zhou L, Chen L.
    Eur J Radiol; 2020 Apr 30; 125():108892. PubMed ID: 32087466
    [Abstract] [Full Text] [Related]

  • 18. T2-weighted MRI signal intensity as a predictor of hormonal and tumoral responses to somatostatin receptor ligands in acromegaly: a perspective.
    Potorac I, Beckers A, Bonneville JF.
    Pituitary; 2017 Feb 30; 20(1):116-120. PubMed ID: 28197813
    [Abstract] [Full Text] [Related]

  • 19. MRI of pituitary adenomas in acromegaly.
    Marro B, Zouaoui A, Sahel M, Crozat N, Gerber S, Sourour N, Sag K, Marsault C.
    Neuroradiology; 1997 Jun 30; 39(6):394-9. PubMed ID: 9225316
    [Abstract] [Full Text] [Related]

  • 20. Age, GH/IGF-1 levels, tumor volume, T2 hypointensity, and tumor subtype rather than proliferation and invasion are all reliable predictors of biochemical response to somatostatin analogue therapy in patients with acromegaly: A clinicopathological study.
    Durmuş ET, Atmaca A, Kefeli M, Çalışkan S, Mete O, Aslan K, Fidan M, Çolak R, Durmuş B.
    Growth Horm IGF Res; 2022 Dec 30; 67():101502. PubMed ID: 36115256
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.