These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


196 related items for PubMed ID: 30509467

  • 1. [FeFe]-hydrogenases from green algae.
    Engelbrecht V, Happe T.
    Methods Enzymol; 2018; 613():203-230. PubMed ID: 30509467
    [Abstract] [Full Text] [Related]

  • 2. How algae produce hydrogen--news from the photosynthetic hydrogenase.
    Stripp ST, Happe T.
    Dalton Trans; 2009 Dec 07; (45):9960-9. PubMed ID: 19904421
    [Abstract] [Full Text] [Related]

  • 3. Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae.
    Kamp C, Silakov A, Winkler M, Reijerse EJ, Lubitz W, Happe T.
    Biochim Biophys Acta; 2008 May 07; 1777(5):410-6. PubMed ID: 18355437
    [Abstract] [Full Text] [Related]

  • 4. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms.
    Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M.
    Annu Rev Plant Biol; 2007 May 07; 58():71-91. PubMed ID: 17150028
    [Abstract] [Full Text] [Related]

  • 5. Engineering photosynthetic organisms for the production of biohydrogen.
    Dubini A, Ghirardi ML.
    Photosynth Res; 2015 Mar 07; 123(3):241-53. PubMed ID: 24671643
    [Abstract] [Full Text] [Related]

  • 6. The structurally unique photosynthetic Chlorella variabilis NC64A hydrogenase does not interact with plant-type ferredoxins.
    Engelbrecht V, Rodríguez-Maciá P, Esselborn J, Sawyer A, Hemschemeier A, Rüdiger O, Lubitz W, Winkler M, Happe T.
    Biochim Biophys Acta Bioenerg; 2017 Sep 07; 1858(9):771-778. PubMed ID: 28647463
    [Abstract] [Full Text] [Related]

  • 7. Implementation of photobiological H2 production: the O 2 sensitivity of hydrogenases.
    Ghirardi ML.
    Photosynth Res; 2015 Sep 07; 125(3):383-93. PubMed ID: 26022106
    [Abstract] [Full Text] [Related]

  • 8. Synthetic biology for improved hydrogen production in Chlamydomonas reinhardtii.
    King SJ, Jerkovic A, Brown LJ, Petroll K, Willows RD.
    Microb Biotechnol; 2022 Jul 07; 15(7):1946-1965. PubMed ID: 35338590
    [Abstract] [Full Text] [Related]

  • 9. Evolutionary and biotechnological implications of robust hydrogenase activity in halophilic strains of Tetraselmis.
    D'Adamo S, Jinkerson RE, Boyd ES, Brown SL, Baxter BK, Peters JW, Posewitz MC.
    PLoS One; 2014 Jul 07; 9(1):e85812. PubMed ID: 24465722
    [Abstract] [Full Text] [Related]

  • 10. Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120.
    Avilan L, Roumezi B, Risoul V, Bernard CS, Kpebe A, Belhadjhassine M, Rousset M, Brugna M, Latifi A.
    Appl Microbiol Biotechnol; 2018 Jul 07; 102(13):5775-5783. PubMed ID: 29691627
    [Abstract] [Full Text] [Related]

  • 11. The Alga Uronema belkae Has Two Structural Types of [FeFe]-Hydrogenases with Different Biochemical Properties.
    Alavi G, Engelbrecht V, Hemschemeier A, Happe T.
    Int J Mol Sci; 2023 Dec 09; 24(24):. PubMed ID: 38139142
    [Abstract] [Full Text] [Related]

  • 12. Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions.
    Xiong W, Zhao X, Zhu G, Shao C, Li Y, Ma W, Xu X, Tang R.
    Angew Chem Int Ed Engl; 2015 Oct 05; 54(41):11961-5. PubMed ID: 26302695
    [Abstract] [Full Text] [Related]

  • 13. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H2 production.
    Wecker MS, Beaton SE, Chado RA, Ghirardi ML.
    Biotechnol Bioeng; 2017 Feb 05; 114(2):291-297. PubMed ID: 27531314
    [Abstract] [Full Text] [Related]

  • 14. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.
    Wang M, Chen L, Li X, Sun L.
    Dalton Trans; 2011 Dec 28; 40(48):12793-800. PubMed ID: 21983599
    [Abstract] [Full Text] [Related]

  • 15. Photosynthetic hydrogen production: Novel protocols, promising engineering approaches and application of semi-synthetic hydrogenases.
    Kosourov S, Böhm M, Senger M, Berggren G, Stensjö K, Mamedov F, Lindblad P, Allahverdiyeva Y.
    Physiol Plant; 2021 Oct 28; 173(2):555-567. PubMed ID: 33860946
    [Abstract] [Full Text] [Related]

  • 16. Oxygen-tolerant hydrogenases in hydrogen-based technologies.
    Friedrich B, Fritsch J, Lenz O.
    Curr Opin Biotechnol; 2011 Jun 28; 22(3):358-64. PubMed ID: 21334190
    [Abstract] [Full Text] [Related]

  • 17. [NiFeSe]-hydrogenase chemistry.
    Wombwell C, Caputo CA, Reisner E.
    Acc Chem Res; 2015 Nov 17; 48(11):2858-65. PubMed ID: 26488197
    [Abstract] [Full Text] [Related]

  • 18. Hydrogenases for biological hydrogen production.
    Kim DH, Kim MS.
    Bioresour Technol; 2011 Sep 17; 102(18):8423-31. PubMed ID: 21435869
    [Abstract] [Full Text] [Related]

  • 19. Hydrogenases in green algae: do they save the algae's life and solve our energy problems?
    Happe T, Hemschemeier A, Winkler M, Kaminski A.
    Trends Plant Sci; 2002 Jun 17; 7(6):246-50. PubMed ID: 12049920
    [Abstract] [Full Text] [Related]

  • 20. Novel concepts and engineering strategies for heterologous expression of efficient hydrogenases in photosynthetic microorganisms.
    Schumann C, Fernández Méndez J, Berggren G, Lindblad P.
    Front Microbiol; 2023 Jun 17; 14():1179607. PubMed ID: 37502399
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.