These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
959 related items for PubMed ID: 30513069
41. Enhancement of the activity of Cu/TiO2 catalyst by Eu modification for selective catalytic reduction of NOx with NH3. Liu YZ, Xu QY, Guo RT, Duan CP, Wu GL, Miao YF, Gu JW. Environ Sci Pollut Res Int; 2020 Aug; 27(22):27663-27673. PubMed ID: 32394254 [Abstract] [Full Text] [Related]
42. Low-temperature NH3 abatement via selective oxidation over a supported copper catalyst with high Cu+ abundance. Yang Z, Peng L, Yang L, Fu M, Ye D, Chen P. J Environ Sci (China); 2024 Sep; 143():12-22. PubMed ID: 38644010 [Abstract] [Full Text] [Related]
43. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3. Jiang H, Wang Q, Wang H, Chen Y, Zhang M. ACS Appl Mater Interfaces; 2016 Oct 12; 8(40):26817-26826. PubMed ID: 27661447 [Abstract] [Full Text] [Related]
44. Catalytic Performance of Spherical MCM-41 Modified with Copper and Iron as Catalysts of NH3-SCR Process. Jankowska A, Chłopek A, Kowalczyk A, Rutkowska M, Michalik M, Liu S, Chmielarz L. Molecules; 2020 Nov 30; 25(23):. PubMed ID: 33266178 [Abstract] [Full Text] [Related]
45. Effect of water vapor on NH3-NO/NO2 SCR performance of fresh and aged MnOx-NbOx-CeO2 catalysts. Chen L, Si Z, Wu X, Weng D, Wu Z. J Environ Sci (China); 2015 May 01; 31():240-7. PubMed ID: 25968280 [Abstract] [Full Text] [Related]
46. A novel CNTs functionalized CeO2/CNTs-GAC catalyst with high NO conversion and SO2 tolerance for low temperature selective catalytic reduction of NO by NH3. Pu Y, Wang P, Jiang W, Dai Z, Yang L, Jiang X, Jiang Z, Yao L. Chemosphere; 2021 Dec 01; 284():131377. PubMed ID: 34225121 [Abstract] [Full Text] [Related]
47. Fe2O3 particles as superior catalysts for low temperature selective catalytic reduction of NO with NH3. Wang X, Gui K. J Environ Sci (China); 2013 Dec 01; 25(12):2469-75. PubMed ID: 24649679 [Abstract] [Full Text] [Related]
48. A study on the reaction characteristics of vanadium-impregnated natural manganese oxide in ammonia selective catalytic reduction. Kim SS, Lee SM, Park KH, Kwon DW, Hong SC. J Air Waste Manag Assoc; 2011 May 01; 61(5):552-8. PubMed ID: 21608495 [Abstract] [Full Text] [Related]
49. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas. Zhao L, Li C, Zhang X, Zeng G, Zhang J, Xie Y. Environ Sci Pollut Res Int; 2016 Jan 01; 23(2):1471-81. PubMed ID: 26370819 [Abstract] [Full Text] [Related]
50. Promotion effect of Ce and Ta co-doping on the NH3-SCR performance over V2O5/TiO2 catalyst. Liu L, Shen X, Lian Z, Lin C, Zhu Y, Shan W, He H. J Environ Sci (China); 2025 Apr 01; 150():332-339. PubMed ID: 39306408 [Abstract] [Full Text] [Related]
51. Mesoporous MnOx-CeO2 composites for NH3-SCR: the effect of preparation methods and a third dopant. Weiman L, Haidi L, Yunfa C. RSC Adv; 2019 Apr 12; 9(21):11912-11921. PubMed ID: 35517014 [Abstract] [Full Text] [Related]
52. Titania-Samarium-Manganese Composite Oxide for the Low-Temperature Selective Catalytic Reduction of NO with NH3. Xu Q, Fang Z, Chen Y, Guo Y, Guo Y, Wang L, Wang Y, Zhang J, Zhan W. Environ Sci Technol; 2020 Feb 18; 54(4):2530-2538. PubMed ID: 31990529 [Abstract] [Full Text] [Related]
53. Mechanism of the selective catalytic oxidation of slip ammonia over Ru-modified Ce-Zr complexes determined by in situ diffuse reflectance infrared Fourier transform spectroscopy. Chen W, Ma Y, Qu Z, Liu Q, Huang W, Hu X, Yan N. Environ Sci Technol; 2014 Oct 21; 48(20):12199-205. PubMed ID: 25229460 [Abstract] [Full Text] [Related]
54. DRIFT study of CuO-CeO₂-TiO₂ mixed oxides for NOx reduction with NH₃ at low temperatures. Chen L, Si Z, Wu X, Weng D. ACS Appl Mater Interfaces; 2014 Jun 11; 6(11):8134-45. PubMed ID: 24848157 [Abstract] [Full Text] [Related]
55. The mechanism of ammonium bisulfate formation and decomposition over V/WTi catalysts for NH3-selective catalytic reduction at various temperatures. Li C, Shen M, Yu T, Wang J, Wang J, Zhai Y. Phys Chem Chem Phys; 2017 Jun 14; 19(23):15194-15206. PubMed ID: 28561855 [Abstract] [Full Text] [Related]
56. Examination of surface phenomena of V₂O₅ loaded on new nanostructured TiO₂ prepared by chemical vapor condensation for enhanced NH₃-based selective catalytic reduction (SCR) at low temperatures. Cha W, Yun ST, Jurng J. Phys Chem Chem Phys; 2014 Sep 07; 16(33):17900-7. PubMed ID: 25045767 [Abstract] [Full Text] [Related]
57. Effects of manganese content and calcination temperature on Mn/Zr-PILM catalyst for low-temperature selective catalytic reduction of NOx by NH3 in metallurgical sintering flue gas. Han Z, Yu Q, Teng Z, Wu B, Xue Z, Qin Q. Environ Sci Pollut Res Int; 2019 May 07; 26(13):12920-12927. PubMed ID: 30888621 [Abstract] [Full Text] [Related]
58. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al2O3 Catalyst at Near-Room Temperature: Insights into the Importance of the Catalyst Surface on the Reaction Mechanism. Wang Y, Craven M, Yu X, Ding J, Bryant P, Huang J, Tu X. ACS Catal; 2019 Dec 06; 9(12):10780-10793. PubMed ID: 32064144 [Abstract] [Full Text] [Related]
59. Effect of Calcination Temperature on the Activation Performance and Reaction Mechanism of Ce-Mn-Ru/TiO2 Catalysts for Selective Catalytic Reduction of NO with NH3. Ren Z, Zhang H, Wang G, Pan Y, Yu Z, Long H. ACS Omega; 2020 Dec 29; 5(51):33357-33371. PubMed ID: 33403298 [Abstract] [Full Text] [Related]