These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


351 related items for PubMed ID: 30520827

  • 21. Dynamic effects of CYP3A5 polymorphism on dose requirement and trough concentration of tacrolimus in renal transplant recipients.
    Chen P, Li J, Li J, Deng R, Fu Q, Chen J, Huang M, Chen X, Wang C.
    J Clin Pharm Ther; 2017 Feb; 42(1):93-97. PubMed ID: 27885697
    [Abstract] [Full Text] [Related]

  • 22. Pharmacokinetic and CYP3A5 pharmacogenetic differences between once- and twice-daily tacrolimus from the first dosing day to 1 year after renal transplantation.
    Satoh S, Niioka T, Kagaya H, Numakura K, Inoue T, Saito M, Komine N, Narita S, Tsuchiya N, Habuchi T, Miura M.
    Pharmacogenomics; 2014 Aug; 15(11):1495-506. PubMed ID: 25303300
    [Abstract] [Full Text] [Related]

  • 23. Genetic polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus.
    Zhao Y, Song M, Guan D, Bi S, Meng J, Li Q, Wang W.
    Transplant Proc; 2005 Aug; 37(1):178-81. PubMed ID: 15808586
    [Abstract] [Full Text] [Related]

  • 24. Single-Nucleotide Polymorphism of CYP3A5 Impacts the Exposure to Tacrolimus in Pediatric Renal Transplant Recipients: A Pharmacogenetic Substudy of the TWIST Trial.
    Billing H, Höcker B, Fichtner A, van Damme-Lombaerts R, Friman S, Jaray J, Vondrak K, Sarvary E, Dello Strologo L, Oellerich M, von Ahsen N, Tönshoff B.
    Ther Drug Monit; 2017 Feb; 39(1):21-28. PubMed ID: 28030534
    [Abstract] [Full Text] [Related]

  • 25. CYP3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients.
    Deininger KM, Vu A, Page RL, Ambardekar AV, Lindenfeld J, Aquilante CL.
    Clin Transplant; 2016 Sep; 30(9):1074-81. PubMed ID: 27314545
    [Abstract] [Full Text] [Related]

  • 26. Tacrolimus concentrations in relation to CYP3A and ABCB1 polymorphisms among solid organ transplant recipients in Korea.
    Jun KR, Lee W, Jang MS, Chun S, Song GW, Park KT, Lee SG, Han DJ, Kang C, Cho DY, Kim JQ, Min WK.
    Transplantation; 2009 Apr 27; 87(8):1225-31. PubMed ID: 19384171
    [Abstract] [Full Text] [Related]

  • 27. Comparison of pharmacokinetics and pharmacogenetics of once- and twice-daily tacrolimus in the early stage after renal transplantation.
    Niioka T, Satoh S, Kagaya H, Numakura K, Inoue T, Saito M, Narita S, Tsuchiya N, Habuchi T, Miura M.
    Transplantation; 2012 Nov 27; 94(10):1013-9. PubMed ID: 23073468
    [Abstract] [Full Text] [Related]

  • 28. The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients.
    Zhang JJ, Liu SB, Xue L, Ding XL, Zhang H, Miao LY.
    Int J Clin Pharmacol Ther; 2015 Sep 27; 53(9):728-36. PubMed ID: 26227094
    [Abstract] [Full Text] [Related]

  • 29. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus.
    Hesselink DA, van Schaik RH, van der Heiden IP, van der Werf M, Gregoor PJ, Lindemans J, Weimar W, van Gelder T.
    Clin Pharmacol Ther; 2003 Sep 27; 74(3):245-54. PubMed ID: 12966368
    [Abstract] [Full Text] [Related]

  • 30. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis.
    Zuo XC, Ng CM, Barrett JS, Luo AJ, Zhang BK, Deng CH, Xi LY, Cheng K, Ming YZ, Yang GP, Pei Q, Zhu LJ, Yuan H, Liao HQ, Ding JJ, Wu D, Zhou YN, Jing NN, Huang ZJ.
    Pharmacogenet Genomics; 2013 May 27; 23(5):251-61. PubMed ID: 23459029
    [Abstract] [Full Text] [Related]

  • 31. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients.
    Haufroid V, Mourad M, Van Kerckhove V, Wawrzyniak J, De Meyer M, Eddour DC, Malaise J, Lison D, Squifflet JP, Wallemacq P.
    Pharmacogenetics; 2004 Mar 27; 14(3):147-54. PubMed ID: 15167702
    [Abstract] [Full Text] [Related]

  • 32. Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: a study according to the post-transplant phase.
    Aouam K, Kolsi A, Kerkeni E, Ben Fredj N, Chaabane A, Monastiri K, Boughattas N.
    Pharmacogenomics; 2015 Dec 27; 16(18):2045-54. PubMed ID: 26615671
    [Abstract] [Full Text] [Related]

  • 33. Influence of CYP3A5 polymorphism on tacrolimus maintenance doses and serum levels after renal transplantation: age dependency and pharmacological interaction with steroids.
    Ferraris JR, Argibay PF, Costa L, Jimenez G, Coccia PA, Ghezzi LF, Ferraris V, Belloso WH, Redal MA, Larriba JM.
    Pediatr Transplant; 2011 Aug 27; 15(5):525-32. PubMed ID: 21711429
    [Abstract] [Full Text] [Related]

  • 34. CYP3A5 genotype affects time to therapeutic tacrolimus level in pediatric kidney transplant recipients.
    Yanik MV, Seifert ME, Locke JE, Hauptfeld-Dolejsek V, Crowley MR, Cutter GR, Mannon RB, Feig DI, Limdi NA.
    Pediatr Transplant; 2019 Aug 27; 23(5):e13494. PubMed ID: 31124575
    [Abstract] [Full Text] [Related]

  • 35. Long-Term Influence of CYP3A5, CYP3A4, ABCB1, and NR1I2 Polymorphisms on Tacrolimus Concentration in Chinese Renal Transplant Recipients.
    Liu F, Ou YM, Yu AR, Xiong L, Xin HW.
    Genet Test Mol Biomarkers; 2017 Nov 27; 21(11):663-673. PubMed ID: 28945481
    [Abstract] [Full Text] [Related]

  • 36. Impact of CYP3A5 polymorphism on trough concentrations and outcomes of tacrolimus minimization during the early period after kidney transplantation.
    Yaowakulpatana K, Vadcharavivad S, Ingsathit A, Areepium N, Kantachuvesiri S, Phakdeekitcharoen B, Sukasem C, Sra-Ium S, Sumethkul V, Kitiyakara C.
    Eur J Clin Pharmacol; 2016 Mar 27; 72(3):277-83. PubMed ID: 26635230
    [Abstract] [Full Text] [Related]

  • 37. Reduced variability of tacrolimus trough level in once-daily tacrolimus-based Taiwanese kidney transplant recipients with high-expressive genotype of cytochrome P450 3A5.
    Wu MJ, Chang CH, Cheng CY, Shu KH, Chen CH, Cheng CH, Yu TM, Chuang YW, Huang ST, Tsai SF, Ho HC, Li JR, Shiu YN, Fu YC.
    Transplant Proc; 2014 Mar 27; 46(2):403-5. PubMed ID: 24655974
    [Abstract] [Full Text] [Related]

  • 38. CYP3A4/5 genotypes and age codetermine tacrolimus concentration and dosage in pediatric heart transplant recipients.
    Liu L, Huang X, Zhou Y, Han Y, Zhang J, Zeng F, Huang Y, Zhou H, Zhang Y.
    Int Immunopharmacol; 2022 Oct 27; 111():109164. PubMed ID: 35998509
    [Abstract] [Full Text] [Related]

  • 39. Impact of CYP3A4*1B and CYP3A5*3 polymorphisms on the pharmacokinetics of cyclosporine and sirolimus in renal transplant recipients.
    Żochowska D, Wyzgał J, Pączek L.
    Ann Transplant; 2012 Oct 27; 17(3):36-44. PubMed ID: 23018254
    [Abstract] [Full Text] [Related]

  • 40. Effect of CYP3A5 genotype, steroids, and azoles on tacrolimus in a pediatric renal transplant population.
    Lalan S, Abdel-Rahman S, Gaedigk A, Leeder JS, Warady BA, Dai H, Blowey D.
    Pediatr Nephrol; 2014 Oct 27; 29(10):2039-49. PubMed ID: 24875272
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.