These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
137 related items for PubMed ID: 30521098
1. Photofunctionalizing effects of hydroxyapatite combined with TiO2 on bone regeneration in rabbit calvarial defects. Kim SY, Bark CW, Van Quy H, Seo SJ, Lim JH, Lee JM, Suh JY, Lee Y, Um HS, Kim YG. J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1953-1959. PubMed ID: 30521098 [Abstract] [Full Text] [Related]
2. Effects of Enhanced Hydrophilic Titanium Dioxide-Coated Hydroxyapatite on Bone Regeneration in Rabbit Calvarial Defects. Lee JE, Bark CW, Quy HV, Seo SJ, Lim JH, Kang SA, Lee Y, Lee JM, Suh JY, Kim YG. Int J Mol Sci; 2018 Nov 19; 19(11):. PubMed ID: 30463215 [Abstract] [Full Text] [Related]
3. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. Ishack S, Mediero A, Wilder T, Ricci JL, Cronstein BN. J Biomed Mater Res B Appl Biomater; 2017 Feb 19; 105(2):366-375. PubMed ID: 26513656 [Abstract] [Full Text] [Related]
4. Bone regeneration in rabbit calvarial critical-sized defects filled with composite in situ formed xenogenic dentin and biphasic tricalcium phosphate/hyroxyapatite mixture. Kamal M, Andersson L, Al-Asfour A, Bartella AK, Gremse F, Rosenhain S, Gabato S, Hölzle F, Kessler P, Lethaus B. J Biomed Mater Res B Appl Biomater; 2019 Apr 19; 107(3):773-782. PubMed ID: 30253039 [Abstract] [Full Text] [Related]
5. A comparison of the bone regeneration and soft-tissue-formation capabilities of various injectable-grafting materials in a rabbit calvarial defect model. Chen CL, Tien HW, Chuang CH, Chen YC. J Biomed Mater Res B Appl Biomater; 2019 Apr 19; 107(3):529-544. PubMed ID: 29722122 [Abstract] [Full Text] [Related]
13. Role of HA and BG in engineering poly(ε-caprolactone) porous scaffolds for accelerating cranial bone regeneration. Yin HM, Li X, Wang P, Ren Y, Liu W, Xu JZ, Li JH, Li ZM. J Biomed Mater Res A; 2019 Mar 19; 107(3):654-662. PubMed ID: 30474348 [Abstract] [Full Text] [Related]
14. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. Bi L, Jung S, Day D, Neidig K, Dusevich V, Eick D, Bonewald L. J Biomed Mater Res A; 2012 Dec 19; 100(12):3267-75. PubMed ID: 22733586 [Abstract] [Full Text] [Related]
15. Degradation rate of DNA scaffolds and bone regeneration. Matsumoto A, Kajiya H, Yamamoto-M N, Yanagi T, Imamura A, Okabe K, Fukushima T, Kido H, Ohno J. J Biomed Mater Res B Appl Biomater; 2019 Jan 19; 107(1):122-128. PubMed ID: 29521019 [Abstract] [Full Text] [Related]
16. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Dadsetan M, Guda T, Runge MB, Mijares D, LeGeros RZ, LeGeros JP, Silliman DT, Lu L, Wenke JC, Brown Baer PR, Yaszemski MJ. Acta Biomater; 2015 May 19; 18():9-20. PubMed ID: 25575855 [Abstract] [Full Text] [Related]
17. Repair of rat calvarial defects using Si-doped hydroxyapatite scaffolds loaded with a bone morphogenetic protein-2-related peptide. Cui W, Sun G, Qu Y, Xiong Y, Sun T, Ji Y, Yang L, Shao Z, Ma J, Zhang S, Guo X. J Orthop Res; 2016 Nov 19; 34(11):1874-1882. PubMed ID: 26909759 [Abstract] [Full Text] [Related]