These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The energy expenditure of spina bifida children during walking and wheelchair ambulation. Evans EP, Tew B. Z Kinderchir; 1981 Dec; 34(4):425-7. PubMed ID: 7036583 [Abstract] [Full Text] [Related]
4. Ambulation in the adolescent with myelomeningocele. I: Early childhood predictors. Findley TW, Agre JC, Habeck RV, Schmalz R, Birkebak RR, McNally MC. Arch Phys Med Rehabil; 1987 Aug; 68(8):518-22. PubMed ID: 3304196 [Abstract] [Full Text] [Related]
5. Treadmill testing of children who have spina bifida and are ambulatory: does peak oxygen uptake reflect maximum oxygen uptake? de Groot JF, Takken T, de Graaff S, Gooskens RH, Helders PJ, Vanhees L. Phys Ther; 2009 Jul; 89(7):679-87. PubMed ID: 19482903 [Abstract] [Full Text] [Related]
6. Physical activity capacity in children with myelomeningocele. Agre JC, Findley TW, McNally MC, Habeck R, Leon AS, Stradel L, Birkebak R, Schmalz R. Arch Phys Med Rehabil; 1987 Jun; 68(6):372-7. PubMed ID: 3592952 [Abstract] [Full Text] [Related]
7. Reproducibility of energy cost of locomotion in ambulatory children with spina bifida. De Groot JF, Takken T, Schoenmakers MA, Tummers L, Vanhees L, Helders PJ. Gait Posture; 2010 Feb; 31(2):159-63. PubMed ID: 19875289 [Abstract] [Full Text] [Related]
8. Oxygen consumption of elderly persons with bilateral below knee amputations: ambulation vs wheelchair propulsion. DuBow LL, Witt PL, Kadaba MP, Reyes R, Cochran V. Arch Phys Med Rehabil; 1983 Jun; 64(6):255-9. PubMed ID: 6860095 [Abstract] [Full Text] [Related]
12. Influence of walking speed on lower limb muscle activity and energy consumption during treadmill walking of hemiparetic patients. Hesse S, Werner C, Paul T, Bardeleben A, Chaler J. Arch Phys Med Rehabil; 2001 Nov; 82(11):1547-50. PubMed ID: 11689974 [Abstract] [Full Text] [Related]
14. Metabolic determinants of 1-mile run/walk performance in children. McCormack WP, Cureton KJ, Bullock TA, Weyand PG. Med Sci Sports Exerc; 1991 May; 23(5):611-7. PubMed ID: 2072840 [Abstract] [Full Text] [Related]
15. Energy cost of walking in normal children and in those with cerebral palsy: comparison of heart rate and oxygen uptake. Rose J, Gamble JG, Medeiros J, Burgos A, Haskell WL. J Pediatr Orthop; 1989 May; 9(3):276-9. PubMed ID: 2723046 [Abstract] [Full Text] [Related]
16. The influence of ankle-foot orthoses on gait and energy expenditure in spina bifida. Duffy CM, Graham HK, Cosgrove AP. J Pediatr Orthop; 2000 May; 20(3):356-61. PubMed ID: 10823604 [Abstract] [Full Text] [Related]
17. Walking energy expenditure in able-bodied individuals: a comparison of common measures of energy efficiency. Thomas SS, Buckon CE, Schwartz MH, Sussman MD, Aiona MD. Gait Posture; 2009 Jun; 29(4):592-6. PubMed ID: 19188067 [Abstract] [Full Text] [Related]
18. Anomalous centre of mass energy fluctuations during treadmill walking in healthy individuals. Collett J, Dawes H, Howells K, Elsworth C, Izadi H, Sackley C. Gait Posture; 2007 Sep; 26(3):400-6. PubMed ID: 17116395 [Abstract] [Full Text] [Related]
19. Energy expenditure of diplegic ambulation using flexible plastic ankle foot orthoses. Suzuki N, Shinohara T, Kimizuka M, Yamaguchi K, Mita K. Bull Hosp Jt Dis; 2000 Sep; 59(2):76-80. PubMed ID: 10983255 [Abstract] [Full Text] [Related]
20. Objective and useful mobility assessment of patients with arthropathy of the hip and knee. Stoodley M, Sikorski JM. Clin Orthop Relat Res; 1987 Nov; (224):110-6. PubMed ID: 3665228 [Abstract] [Full Text] [Related] Page: [Next] [New Search]