These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
213 related items for PubMed ID: 30531486
1. The Effect of Cadence on the Mechanics and Energetics of Constant Power Cycling. Brennan SF, Cresswell AG, Farris DJ, Lichtwark GA. Med Sci Sports Exerc; 2019 May; 51(5):941-950. PubMed ID: 30531486 [Abstract] [Full Text] [Related]
2. The effect of muscle-tendon unit vs. fascicle analyses on vastus lateralis force-generating capacity during constant power output cycling with variable cadence. Brennan SF, Cresswell AG, Farris DJ, Lichtwark GA. J Appl Physiol (1985); 2018 Apr 01; 124(4):993-1002. PubMed ID: 29357487 [Abstract] [Full Text] [Related]
3. The effects of crank power and cadence on muscle fascicle shortening velocity, muscle activation and joint-specific power during cycling. Riveros-Matthey CD, Carroll TJ, Lichtwark GA, Connick MJ. J Exp Biol; 2023 Jul 01; 226(13):. PubMed ID: 37326292 [Abstract] [Full Text] [Related]
4. Muscle activation during cycling at different cadences: effect of maximal strength capacity. Bieuzen F, Lepers R, Vercruyssen F, Hausswirth C, Brisswalter J. J Electromyogr Kinesiol; 2007 Dec 01; 17(6):731-8. PubMed ID: 16996277 [Abstract] [Full Text] [Related]
5. The effect of cadence on the muscle-tendon mechanics of the gastrocnemius muscle during walking. Brennan SF, Cresswell AG, Farris DJ, Lichtwark GA. Scand J Med Sci Sports; 2017 Mar 01; 27(3):289-298. PubMed ID: 26888631 [Abstract] [Full Text] [Related]
6. Effect of Cadence on Physiological and Perceptual Responses during Eccentric Cycling at Different Power Outputs. Mater A, Boly A, Assadi H, Martin A, Lepers R. Med Sci Sports Exerc; 2023 Jun 01; 55(6):1105-1113. PubMed ID: 36719652 [Abstract] [Full Text] [Related]
7. Influence of cycling cadence on neuromuscular activity of the knee extensors in humans. Sarre G, Lepers R, Maffiuletti N, Millet G, Martin A. Eur J Appl Physiol; 2003 Jan 01; 88(4-5):476-9. PubMed ID: 12527981 [Abstract] [Full Text] [Related]
8. Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists. Takaishi T, Yamamoto T, Ono T, Ito T, Moritani T. Med Sci Sports Exerc; 1998 Mar 01; 30(3):442-9. PubMed ID: 9526892 [Abstract] [Full Text] [Related]
9. The relationship between cadence and lower extremity EMG in cyclists and noncyclists. Marsh AP, Martin PE. Med Sci Sports Exerc; 1995 Feb 01; 27(2):217-25. PubMed ID: 7723645 [Abstract] [Full Text] [Related]
10. The Impact of Cycling Cadence on Respiratory and Hemodynamic Responses to Exercise. Mitchell RA, Boyle KG, Ramsook AH, Puyat JH, Henderson WR, Koehle MS, Guenette JA. Med Sci Sports Exerc; 2019 Aug 01; 51(8):1727-1735. PubMed ID: 30817718 [Abstract] [Full Text] [Related]
11. Oxygenation, local muscle oxygen consumption and joint specific power in cycling: the effect of cadence at a constant external work rate. Skovereng K, Ettema G, van Beekvelt MC. Eur J Appl Physiol; 2016 Jun 01; 116(6):1207-17. PubMed ID: 27126859 [Abstract] [Full Text] [Related]
12. The Mechanics of Seated and Nonseated Cycling at Very-High-Power Output: A Joint-Level Analysis. Wilkinson RD, Lichtwark GA, Cresswell AG. Med Sci Sports Exerc; 2020 Jul 01; 52(7):1585-1594. PubMed ID: 31996561 [Abstract] [Full Text] [Related]
13. Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Marsh AP, Martin PE, Foley KO. Med Sci Sports Exerc; 2000 Sep 01; 32(9):1630-4. PubMed ID: 10994916 [Abstract] [Full Text] [Related]
14. Effect of applied cadence in repeated sprint cycling on muscle characteristics. Klich S, Michalik K, Pietraszewski B, Hansen EA, Madeleine P, Kawczyński A. Eur J Appl Physiol; 2024 May 01; 124(5):1609-1620. PubMed ID: 38175273 [Abstract] [Full Text] [Related]
15. The Effect of Cadence on Shank Muscle Oxygen Consumption and Deoxygenation in Relation to Joint Specific Power and Cycling Kinematics. Skovereng K, Ettema G, van Beekvelt M. PLoS One; 2017 May 01; 12(1):e0169573. PubMed ID: 28060894 [Abstract] [Full Text] [Related]
16. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Marsh AP, Martin PE. Med Sci Sports Exerc; 1997 Sep 01; 29(9):1225-32. PubMed ID: 9309635 [Abstract] [Full Text] [Related]
17. Torque, power and muscle activation of eccentric and concentric isokinetic cycling. Green DJ, Thomas K, Ross EZ, Green SC, Pringle JSM, Howatson G. J Electromyogr Kinesiol; 2018 Jun 01; 40():56-63. PubMed ID: 29631117 [Abstract] [Full Text] [Related]
18. Factors contributing to lower metabolic demand of eccentric compared with concentric cycling. Peñailillo L, Blazevich AJ, Nosaka K. J Appl Physiol (1985); 2017 Oct 01; 123(4):884-893. PubMed ID: 28663378 [Abstract] [Full Text] [Related]
19. Relation between preferred and optimal cadences during two hours of cycling in triathletes. Argentin S, Hausswirth C, Bernard T, Bieuzen F, Leveque JM, Couturier A, Lepers R. Br J Sports Med; 2006 Apr 01; 40(4):293-8; discussion 298. PubMed ID: 16556781 [Abstract] [Full Text] [Related]
20. Lower-extremity joint kinematics and muscle activations during semi-reclined cycling at different workloads in healthy individuals. Momeni K, Faghri PD, Evans M. J Neuroeng Rehabil; 2014 Oct 17; 11():146. PubMed ID: 25325920 [Abstract] [Full Text] [Related] Page: [Next] [New Search]