These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
153 related items for PubMed ID: 3053243
1. Thermodynamic parameters of the binding of the tight-binding I12X86 lac repressor to operator and non-operator DNA. Maurizot JC, Grebert P. FEBS Lett; 1988 Oct 24; 239(1):105-8. PubMed ID: 3053243 [Abstract] [Full Text] [Related]
2. Interaction of the tight-binding I12-X86 lac repressor with non operator DNA: salt dependence of complex formation. Grebert P, Maurizot JC. Nucleic Acids Res; 1986 Aug 26; 14(16):6613-20. PubMed ID: 3529038 [Abstract] [Full Text] [Related]
5. Lac repressor-operator interaction: DNA length dependence. Khoury AM, Lee HJ, Lillis M, Lu P. Biochim Biophys Acta; 1990 Sep 10; 1087(1):55-60. PubMed ID: 2205296 [Abstract] [Full Text] [Related]
6. lac repressor-lac operator interaction: NMR observations. Nick H, Arndt K, Boschelli F, Jarema MA, Lillis M, Sadler J, Caruthers M, Lu P. Proc Natl Acad Sci U S A; 1982 Jan 10; 79(2):218-22. PubMed ID: 7043455 [Abstract] [Full Text] [Related]
7. Affinities of tight-binding lactose repressors for wild-type and pseudo-operators. Betz JL. J Mol Biol; 1987 Jun 05; 195(3):495-504. PubMed ID: 3309337 [Abstract] [Full Text] [Related]
8. A mutant lactose repressor with altered inducer and operator binding parameters. Chakerian AE, Pfahl M, Olson JS, Matthews KS. J Mol Biol; 1985 May 05; 183(1):43-51. PubMed ID: 3892017 [Abstract] [Full Text] [Related]
9. Escherichia coli lac repressor-lac operator interaction and the influence of allosteric effectors. Horton N, Lewis M, Lu P. J Mol Biol; 1997 Jan 10; 265(1):1-7. PubMed ID: 8995519 [Abstract] [Full Text] [Related]
10. Base substitution mutants of the lac operator: in vivo and in vitro affinities for lac repressor. Betz JL, Sasmor HM, Buck F, Insley MY, Caruthers MH. Gene; 1986 Jan 10; 50(1-3):123-32. PubMed ID: 3556322 [Abstract] [Full Text] [Related]
11. Lac repressor-operator interaction: N-terminal peptide backbone 1H and 15N chemical shifts upon complex formation with DNA. Artz PG, Valentine KG, Opella SJ, Lu P. J Mol Recognit; 1996 Jan 10; 9(1):13-22. PubMed ID: 8723315 [Abstract] [Full Text] [Related]
15. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions. Winter RB, Berg OG, von Hippel PH. Biochemistry; 1981 Nov 24; 20(24):6961-77. PubMed ID: 7032584 [Abstract] [Full Text] [Related]
16. Kinetic studies of inducer binding to lac repressor.operator complex. Dunaway M, Olson JS, Rosenberg JM, Kallai OB, Dickerson RE, Matthews KS. J Biol Chem; 1980 Nov 10; 255(21):10115-9. PubMed ID: 7000772 [Abstract] [Full Text] [Related]
17. Origin of the asymmetrical contact between lac repressor and lac operator DNA. Rastinejad F, Artz P, Lu P. J Mol Biol; 1993 Oct 05; 233(3):389-99. PubMed ID: 8411152 [Abstract] [Full Text] [Related]
18. In vivo interaction of Escherichia coli lac repressor N-terminal fragments with the lac operator. Khoury AM, Nick HS, Lu P. J Mol Biol; 1991 Jun 20; 219(4):623-34. PubMed ID: 1905359 [Abstract] [Full Text] [Related]
19. Symmetric lac operator derivatives: effects of half-operator sequence and spacing on repressor affinity. Sasmor HM, Betz JL. Gene; 1990 Apr 30; 89(1):1-6. PubMed ID: 2197175 [Abstract] [Full Text] [Related]
20. lac repressor mutants with double or triple exchanges in the recognition helix bind specifically to lac operator variants with multiple exchanges. Sartorius J, Lehming N, Kisters B, von Wilcken-Bergmann B, Müller-Hill B. EMBO J; 1989 Apr 30; 8(4):1265-70. PubMed ID: 2663473 [Abstract] [Full Text] [Related] Page: [Next] [New Search]