These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA. Theor Appl Genet; 2006 Aug; 113(3):497-507. PubMed ID: 16767448 [Abstract] [Full Text] [Related]
4. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant. Venegas-Calerón M, Sánchez R, Salas JJ, Garcés R, Martínez-Force E. Planta; 2016 Jul; 244(1):245-58. PubMed ID: 27056057 [Abstract] [Full Text] [Related]
5. Characterization of an oleate 12-desaturase from Physaria fendleri and identification of 5'UTR introns in divergent FAD2 family genes. Lozinsky S, Yang H, Forseille L, Cook GR, Ramirez-Erosa I, Smith MA. Plant Physiol Biochem; 2014 Feb; 75():114-22. PubMed ID: 24429134 [Abstract] [Full Text] [Related]
7. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y. Theor Appl Genet; 2012 Aug; 125(4):715-29. PubMed ID: 22534790 [Abstract] [Full Text] [Related]
10. Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. Huang H, Cui T, Zhang L, Yang Q, Yang Y, Xie K, Fan C, Zhou Y. Theor Appl Genet; 2020 Aug; 133(8):2401-2411. PubMed ID: 32448919 [Abstract] [Full Text] [Related]
12. Strong co-suppression impedes an increase in polyunsaturated fatty acids in seeds overexpressing FAD2. Du C, Chen Y, Wang K, Yang Z, Zhao C, Jia Q, Taylor DC, Zhang M. J Exp Bot; 2019 Feb 05; 70(3):985-994. PubMed ID: 30371807 [Abstract] [Full Text] [Related]
13. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU, Suh MC. Plant Cell Rep; 2011 Oct 05; 30(10):1881-92. PubMed ID: 21647637 [Abstract] [Full Text] [Related]
15. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Lee KR, In Sohn S, Jung JH, Kim SH, Roh KH, Kim JB, Suh MC, Kim HU. Gene; 2013 Dec 01; 531(2):253-62. PubMed ID: 24029080 [Abstract] [Full Text] [Related]
16. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C. Plant Cell Rep; 2010 Apr 01; 29(4):317-25. PubMed ID: 20130882 [Abstract] [Full Text] [Related]
17. A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Pham AT, Lee JD, Shannon JG, Bilyeu KD. Theor Appl Genet; 2011 Sep 01; 123(5):793-802. PubMed ID: 21681491 [Abstract] [Full Text] [Related]
19. The Evolution and Biocatalysis of FAD2 Indicate Its Correlation to the Content of Seed Oil in Plants. Zhao M, Wang W, Wei L, Chen P, Peng L, Qin Z, Yuan F, Wang Z, Ying X. Int J Mol Sci; 2019 Feb 15; 20(4):. PubMed ID: 30781405 [Abstract] [Full Text] [Related]