These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


396 related items for PubMed ID: 30538260

  • 1. Fast adaptation of tropical diatoms to increased warming with trade-offs.
    Jin P, Agustí S.
    Sci Rep; 2018 Dec 11; 8(1):17771. PubMed ID: 30538260
    [Abstract] [Full Text] [Related]

  • 2. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs.
    Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, Li P, Jin P, Xia J.
    Sci Total Environ; 2021 Jun 01; 771():145167. PubMed ID: 33736151
    [Abstract] [Full Text] [Related]

  • 3. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.
    Rosa R, Lopes AR, Pimentel M, Faleiro F, Baptista M, Trübenbach K, Narciso L, Dionísio G, Pegado MR, Repolho T, Calado R, Diniz M.
    Glob Chang Biol; 2014 Oct 01; 20(10):3068-79. PubMed ID: 24771544
    [Abstract] [Full Text] [Related]

  • 4. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs.
    O'Donnell DR, Hamman CR, Johnson EC, Kremer CT, Klausmeier CA, Litchman E.
    Glob Chang Biol; 2018 Oct 01; 24(10):4554-4565. PubMed ID: 29940071
    [Abstract] [Full Text] [Related]

  • 5. Thermal trait variation may buffer Southern Ocean phytoplankton from anthropogenic warming.
    Bishop IW, Anderson SI, Collins S, Rynearson TA.
    Glob Chang Biol; 2022 Oct 01; 28(19):5755-5767. PubMed ID: 35785458
    [Abstract] [Full Text] [Related]

  • 6. Nitrogen limitation inhibits marine diatom adaptation to high temperatures.
    Aranguren-Gassis M, Kremer CT, Klausmeier CA, Litchman E.
    Ecol Lett; 2019 Nov 01; 22(11):1860-1869. PubMed ID: 31429516
    [Abstract] [Full Text] [Related]

  • 7. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean.
    Jabre LJ, Allen AE, McCain JSP, McCrow JP, Tenenbaum N, Spackeen JL, Sipler RE, Green BR, Bronk DA, Hutchins DA, Bertrand EM.
    Proc Natl Acad Sci U S A; 2021 Jul 27; 118(30):. PubMed ID: 34301906
    [Abstract] [Full Text] [Related]

  • 8. Effects of increasing nutrient disturbances on phytoplankton community structure and biodiversity in two tropical seas.
    Zhou Y, Hu B, Zhao W, Cui D, Tan L, Wang J.
    Mar Pollut Bull; 2018 Oct 27; 135():239-248. PubMed ID: 30301035
    [Abstract] [Full Text] [Related]

  • 9. Short- and long-term conditioning of a temperate marine diatom community to acidification and warming.
    Tatters AO, Roleda MY, Schnetzer A, Fu F, Hurd CL, Boyd PW, Caron DA, Lie AA, Hoffmann LJ, Hutchins DA.
    Philos Trans R Soc Lond B Biol Sci; 2013 Oct 27; 368(1627):20120437. PubMed ID: 23980240
    [Abstract] [Full Text] [Related]

  • 10. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.
    Hixson SM, Arts MT.
    Glob Chang Biol; 2016 Aug 27; 22(8):2744-55. PubMed ID: 27070119
    [Abstract] [Full Text] [Related]

  • 11. A global pattern of thermal adaptation in marine phytoplankton.
    Thomas MK, Kremer CT, Klausmeier CA, Litchman E.
    Science; 2012 Nov 23; 338(6110):1085-8. PubMed ID: 23112294
    [Abstract] [Full Text] [Related]

  • 12. Transcriptomic reprogramming of the oceanic diatom Skeletonema dohrnii under warming ocean and acidification.
    Thangaraj S, Sun J.
    Environ Microbiol; 2021 Feb 23; 23(2):980-995. PubMed ID: 32975013
    [Abstract] [Full Text] [Related]

  • 13. Comparative experimental evolution reveals species-specific idiosyncrasies in marine phytoplankton adaptation to warming.
    Barton S, Padfield D, Masterson A, Buckling A, Smirnoff N, Yvon-Durocher G.
    Glob Chang Biol; 2023 Sep 23; 29(18):5261-5275. PubMed ID: 37395481
    [Abstract] [Full Text] [Related]

  • 14. Thermal tolerance and preference of exploited turbinid snails near their range limit in a global warming hotspot.
    Lah RA, Benkendorff K, Bucher D.
    J Therm Biol; 2017 Feb 23; 64():100-108. PubMed ID: 28166939
    [Abstract] [Full Text] [Related]

  • 15. Thermal niche evolution of functional traits in a tropical marine phototroph.
    Baker KG, Radford DT, Evenhuis C, Kuzhiumparam U, Ralph PJ, Doblin MA.
    J Phycol; 2018 Dec 23; 54(6):799-810. PubMed ID: 29901841
    [Abstract] [Full Text] [Related]

  • 16. The adaptive mechanisms of the marine diatom Thalassiosira weissflogii to long-term high CO2 and warming.
    Zhou Y, Wu F, Wu J, Overmans S, Ye M, Xiao M, Peng B, Xu L, Huang J, Lu Y, Wang Y, Liang S, Zhang H, Liang X, Zhong Z, Liu H, Ruan Z, Xia J, Jin P.
    Plant J; 2024 Aug 23; 119(4):2001-2020. PubMed ID: 38943614
    [Abstract] [Full Text] [Related]

  • 17. Positive genetic covariance and limited thermal tolerance constrain tropical insect responses to global warming.
    García-Robledo C, Baer CS.
    J Evol Biol; 2021 Sep 23; 34(9):1432-1446. PubMed ID: 34265126
    [Abstract] [Full Text] [Related]

  • 18. Thermal biases and vulnerability to warming in the world's marine fauna.
    Stuart-Smith RD, Edgar GJ, Barrett NS, Kininmonth SJ, Bates AE.
    Nature; 2015 Dec 03; 528(7580):88-92. PubMed ID: 26560025
    [Abstract] [Full Text] [Related]

  • 19. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101.
    Boatman TG, Lawson T, Geider RJ.
    PLoS One; 2017 Dec 03; 12(1):e0168796. PubMed ID: 28081236
    [Abstract] [Full Text] [Related]

  • 20. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming?
    Habary A, Johansen JL, Nay TJ, Steffensen JF, Rummer JL.
    Glob Chang Biol; 2017 Feb 03; 23(2):566-577. PubMed ID: 27593976
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.