These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


878 related items for PubMed ID: 30545146

  • 1. Transcriptome Sequence Analysis Elaborates a Complex Defensive Mechanism of Grapevine (Vitis vinifera L.) in Response to Salt Stress.
    Guan L, Haider MS, Khan N, Nasim M, Jiu S, Fiaz M, Zhu X, Zhang K, Fang J.
    Int J Mol Sci; 2018 Dec 12; 19(12):. PubMed ID: 30545146
    [Abstract] [Full Text] [Related]

  • 2. Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock.
    Çakır Aydemir B, Yüksel Özmen C, Kibar U, Mutaf F, Büyük PB, Bakır M, Ergül A.
    PLoS One; 2020 Dec 12; 15(7):e0236424. PubMed ID: 32730292
    [Abstract] [Full Text] [Related]

  • 3. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance.
    Das P, Majumder AL.
    Funct Integr Genomics; 2019 Jan 12; 19(1):61-73. PubMed ID: 30046943
    [Abstract] [Full Text] [Related]

  • 4. Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots.
    Henderson SW, Baumann U, Blackmore DH, Walker AR, Walker RR, Gilliham M.
    BMC Plant Biol; 2014 Oct 25; 14():273. PubMed ID: 25344057
    [Abstract] [Full Text] [Related]

  • 5. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling.
    Lu X, Ma L, Zhang C, Yan H, Bao J, Gong M, Wang W, Li S, Ma S, Chen B.
    BMC Plant Biol; 2022 Nov 14; 22(1):528. PubMed ID: 36376811
    [Abstract] [Full Text] [Related]

  • 6. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress.
    Shi P, Gu M.
    BMC Plant Biol; 2020 Dec 30; 20(1):568. PubMed ID: 33380327
    [Abstract] [Full Text] [Related]

  • 7. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance.
    Wang M, Wang Y, Zhang Y, Li C, Gong S, Yan S, Li G, Hu G, Ren H, Yang J, Yu T, Yang K.
    Genes Genomics; 2019 Jul 30; 41(7):781-801. PubMed ID: 30887305
    [Abstract] [Full Text] [Related]

  • 8. Global transcriptome analysis of grapevine (Vitis vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. Thompson Seedless.
    Upadhyay A, Gaonkar T, Upadhyay AK, Jogaiah S, Shinde MP, Kadoo NY, Gupta VS.
    Plant Physiol Biochem; 2018 Aug 30; 129():168-179. PubMed ID: 29885601
    [Abstract] [Full Text] [Related]

  • 9. Expression profile analysis of maize in response to Setosphaeria turcica.
    Shi F, Zhang Y, Wang K, Meng Q, Liu X, Ma L, Li Y, Liu J, Ma L.
    Gene; 2018 Jun 15; 659():100-108. PubMed ID: 29548860
    [Abstract] [Full Text] [Related]

  • 10. RNA-Seq analysis of Clerodendrum inerme (L.) roots in response to salt stress.
    Xiong Y, Yan H, Liang H, Zhang Y, Guo B, Niu M, Jian S, Ren H, Zhang X, Li Y, Zeng S, Wu K, Zheng F, Teixeira da Silva JA, Ma G.
    BMC Genomics; 2019 Oct 10; 20(1):724. PubMed ID: 31601194
    [Abstract] [Full Text] [Related]

  • 11. Physiological and RNA-seq analyses provide insights into the response mechanism of the Cf-10-mediated resistance to Cladosporium fulvum infection in tomato.
    Liu G, Liu J, Zhang C, You X, Zhao T, Jiang J, Chen X, Zhang H, Yang H, Zhang D, Du C, Li J, Xu X.
    Plant Mol Biol; 2018 Mar 10; 96(4-5):403-416. PubMed ID: 29383477
    [Abstract] [Full Text] [Related]

  • 12. VviERF6Ls: an expanded clade in Vitis responds transcriptionally to abiotic and biotic stresses and berry development.
    Toups HS, Cochetel N, Gray D, Cramer GR.
    BMC Genomics; 2020 Jul 09; 21(1):472. PubMed ID: 32646368
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. RNA-seq based transcriptomic analysis of CPPU treated grape berries and emission of volatile compounds.
    Wang W, Khalil-Ur-Rehman M, Feng J, Tao J.
    J Plant Physiol; 2017 Nov 09; 218():155-166. PubMed ID: 28843071
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita.
    Du C, Jiang J, Zhang H, Zhao T, Yang H, Zhang D, Zhao Z, Xu X, Li J.
    BMC Genomics; 2020 Mar 23; 21(1):250. PubMed ID: 32293256
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 44.