These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


137 related items for PubMed ID: 30551099

  • 1. Cyclodextrin-enhanced 1,4-dioxane treatment kinetics with TCE and 1,1,1-TCA using aqueous ozone.
    Khan NA, Johnson MD, Kubicki JD, Holguin FO, Dungan B, Carroll KC.
    Chemosphere; 2019 Mar; 219():335-344. PubMed ID: 30551099
    [Abstract] [Full Text] [Related]

  • 2. Stabilization and prolonged reactivity of aqueous-phase ozone with cyclodextrin.
    Dettmer A, Ball R, Boving TB, Khan NA, Schaub T, Sudasinghe N, Fernandez CA, Carroll KC.
    J Contam Hydrol; 2017 Jan; 196():1-9. PubMed ID: 27993469
    [Abstract] [Full Text] [Related]

  • 3. Spectroscopic methods for aqueous cyclodextrin inclusion complex binding measurement for 1,4-dioxane, chlorinated co-contaminants, and ozone.
    Khan NA, Johnson MD, Carroll KC.
    J Contam Hydrol; 2018 Mar; 210():31-41. PubMed ID: 29478672
    [Abstract] [Full Text] [Related]

  • 4. Peroxone activated persulfate treatment of 1,4-dioxane in the presence of chlorinated solvent co-contaminants.
    Eberle D, Ball R, Boving TB.
    Chemosphere; 2016 Feb; 144():728-35. PubMed ID: 26408980
    [Abstract] [Full Text] [Related]

  • 5. Co-occurrence of 1,4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction.
    Anderson RH, Anderson JK, Bower PA.
    Integr Environ Assess Manag; 2012 Oct; 8(4):731-7. PubMed ID: 22492728
    [Abstract] [Full Text] [Related]

  • 6. An integrated approach using ozone nanobubble and cyclodextrin inclusion complexation to enhance the removal of micropollutants.
    Fan W, An W, Huo M, Xiao D, Lyu T, Cui J.
    Water Res; 2021 May 15; 196():117039. PubMed ID: 33761397
    [Abstract] [Full Text] [Related]

  • 7. Natural attenuation method for contaminant remediation reagent delivery assessment for in situ chemical oxidation using aqueous ozone.
    Khan NA, Carroll KC.
    Chemosphere; 2020 May 15; 247():125848. PubMed ID: 31958648
    [Abstract] [Full Text] [Related]

  • 8. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures.
    Sekar R, Taillefert M, DiChristina TJ.
    Appl Environ Microbiol; 2016 Nov 01; 82(21):6335-6343. PubMed ID: 27542932
    [Abstract] [Full Text] [Related]

  • 9. 1,4-Dioxane cosolvency impacts on trichloroethene dissolution and sorption.
    Milavec J, Tick GR, Brusseau ML, Carroll KC.
    Environ Pollut; 2019 Sep 01; 252(Pt A):777-783. PubMed ID: 31200203
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.
    Hand S, Wang B, Chu KH.
    Sci Total Environ; 2015 Jul 01; 520():154-9. PubMed ID: 25813968
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Degradation of sulfolane using activated persulfate with UV and UV-Ozone.
    Izadifard M, Achari G, Langford CH.
    Water Res; 2017 Nov 15; 125():325-331. PubMed ID: 28869883
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.