These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Azizi S, Mohamad R, Abdul Rahim R, Mohammadinejad R, Bin Ariff A. Int J Biol Macromol; 2017 Nov; 104(Pt A):423-431. PubMed ID: 28591593 [Abstract] [Full Text] [Related]
3. Synthesis of Ag/rGO composite materials with antibacterial activities using facile and rapid microwave-assisted green route. Fan B, Li Y, Han F, Su T, Li J, Zhang R. J Mater Sci Mater Med; 2018 May 10; 29(5):69. PubMed ID: 29748718 [Abstract] [Full Text] [Related]
4. Dissecting the anti-biofilm potency of kappa-carrageenan capped silver nanoparticles against Candida species. Gupta P, Goel A, Singh KR, Meher MK, Gulati K, Poluri KM. Int J Biol Macromol; 2021 Mar 01; 172():30-40. PubMed ID: 33440209 [Abstract] [Full Text] [Related]
5. Anti-biofilm activity and food packaging application of room temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite. Naskar A, Khan H, Sarkar R, Kumar S, Halder D, Jana S. Mater Sci Eng C Mater Biol Appl; 2018 Oct 01; 91():743-753. PubMed ID: 30033309 [Abstract] [Full Text] [Related]
6. High-density polystyrene-grafted silver nanoparticles and their use in the preparation of nanocomposites with antibacterial properties. Krystosiak P, Tomaszewski W, Megiel E. J Colloid Interface Sci; 2017 Jul 15; 498():9-21. PubMed ID: 28315584 [Abstract] [Full Text] [Related]
7. Ultrasmall AgNP-Impregnated Biocompatible Hydrogel with Highly Effective Biofilm Elimination Properties. Haidari H, Kopecki Z, Bright R, Cowin AJ, Garg S, Goswami N, Vasilev K. ACS Appl Mater Interfaces; 2020 Sep 16; 12(37):41011-41025. PubMed ID: 32840353 [Abstract] [Full Text] [Related]
8. One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Celebioglu A, Topuz F, Yildiz ZI, Uyar T. Carbohydr Polym; 2019 Mar 01; 207():471-479. PubMed ID: 30600030 [Abstract] [Full Text] [Related]
9. Bimetallic hydrogels based on chitosan and carrageenan as promising materials for biological applications. Khalil AM, Hashem AH, Kamel S. Biotechnol J; 2023 Oct 01; 18(10):e2300093. PubMed ID: 37291073 [Abstract] [Full Text] [Related]
10. Green synthesis of κ-carrageenan@Ag submicron-particles with high aqueous stability, robust antibacterial activity and low cytotoxicity. Zhu M, Li X, Ge L, Zi Y, Qi M, Li Y, Li D, Mu C. Mater Sci Eng C Mater Biol Appl; 2020 Jan 01; 106():110185. PubMed ID: 31753345 [Abstract] [Full Text] [Related]
11. Molecular characteristics of kappa-selenocarrageenan and application in green synthesis of silver nanoparticles. Jin W, Yu Y, Hou W, Wang G, Zhu Z, He J, Cheng S, Huang Q. Int J Biol Macromol; 2019 Dec 01; 141():529-537. PubMed ID: 31493457 [Abstract] [Full Text] [Related]
12. Development of microbial resistant thermosensitive Ag nanocomposite (gelatin) hydrogels via green process. Manjula B, Varaprasad K, Sadiku R, Ramam K, Reddy GV, Raju KM. J Biomed Mater Res A; 2014 Apr 01; 102(4):928-34. PubMed ID: 23650266 [Abstract] [Full Text] [Related]
13. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Raju KM. Carbohydr Polym; 2013 Jun 05; 95(1):188-94. PubMed ID: 23618258 [Abstract] [Full Text] [Related]
14. Green synthesis of tea Ag nanocomposite hydrogels via mint leaf extraction for effective antibacterial activity. Jayaramudu T, Varaprasad K, Raghavendra GM, Sadiku ER, Mohana Raju K, Amalraj J. J Biomater Sci Polym Ed; 2017 Oct 05; 28(14):1588-1602. PubMed ID: 28589745 [Abstract] [Full Text] [Related]
15. Synthesis of Ag-liposome nano composites. Barani H, Montazer M, Toliyat T, Samadi N. J Liposome Res; 2010 Dec 05; 20(4):323-9. PubMed ID: 20131982 [Abstract] [Full Text] [Related]
16. Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties. Khalid HF, Tehseen B, Sarwar Y, Hussain SZ, Khan WS, Raza ZA, Bajwa SZ, Kanaras AG, Hussain I, Rehman A. J Hazard Mater; 2019 Feb 15; 364():441-448. PubMed ID: 30384254 [Abstract] [Full Text] [Related]
17. A novel and green biomaterial based silver nanocomposite hydrogel: synthesis, characterization and antibacterial effect. Bardajee GR, Hooshyar Z, Rezanezhad H. J Inorg Biochem; 2012 Dec 15; 117():367-73. PubMed ID: 22818024 [Abstract] [Full Text] [Related]
18. In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties. Reithofer MR, Lakshmanan A, Ping AT, Chin JM, Hauser CA. Biomaterials; 2014 Aug 15; 35(26):7535-42. PubMed ID: 24933510 [Abstract] [Full Text] [Related]
19. Development of Antibiofilm Nanocomposites: Ag/Cu Bimetallic Nanoparticles Synthesized on the Surface of Graphene Oxide Nanosheets. Jang J, Lee JM, Oh SB, Choi Y, Jung HS, Choi J. ACS Appl Mater Interfaces; 2020 Aug 12; 12(32):35826-35834. PubMed ID: 32667802 [Abstract] [Full Text] [Related]
20. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, Chen Y, Anbu P. PLoS One; 2016 Aug 12; 11(6):e0157612. PubMed ID: 27304672 [Abstract] [Full Text] [Related] Page: [Next] [New Search]