These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


230 related items for PubMed ID: 30558289

  • 1. Impact of Naja nigricollis Venom on the Production of Methaemoglobin.
    Williams HF, Hayter P, Ravishankar D, Baines A, Layfield HJ, Croucher L, Wark C, Bicknell AB, Trim S, Vaiyapuri S.
    Toxins (Basel); 2018 Dec 15; 10(12):. PubMed ID: 30558289
    [Abstract] [Full Text] [Related]

  • 2. Proteomics and histological assessment of an organotypic model of human skin following exposure to Naja nigricollis venom.
    Ahmadi S, Pachis ST, Kalogeropoulos K, McGeoghan F, Canbay V, Hall SR, Crittenden EP, Dawson CA, Bartlett KE, Gutiérrez JM, Casewell NR, Keller UAD, Laustsen AH.
    Toxicon; 2022 Dec 15; 220():106955. PubMed ID: 36309071
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. The Ex vivo Eye Irritation Test (EVEIT) model as a mean of improving venom ophthalmia understanding.
    Delafontaine M, Panfil C, Spöler F, Kray S, Burgher F, Mathieu L, Blomet J, Schrage NF, Tambourgi DV.
    Toxicon; 2018 Aug 15; 150():253-260. PubMed ID: 29890230
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Factors influencing the hemolysis of human erythrocytes by cardiotoxins from Naja naja kaouthia and Naja naja atra venoms and a phospholipase A2 with cardiotoxin-like activities from Bungarus fasciatus venom.
    Jiang MS, Fletcher JE, Smith LA.
    Toxicon; 1989 Aug 15; 27(2):247-57. PubMed ID: 2718193
    [Abstract] [Full Text] [Related]

  • 7. Distinct cardiotoxic effects by venoms of a spitting cobra (Naja pallida) and a rattlesnake (Crotalus atrox) revealed using an ex vivo Langendorff heart model.
    Vlasblom R, van Thiel J, Bittenbinder MA, van Rhijn JR, Drost R, Muis L, Slagboom J, Salvatori D, Kool J, Veldman RJ.
    Toxicon; 2024 Mar 15; 240():107637. PubMed ID: 38331109
    [Abstract] [Full Text] [Related]

  • 8. Profiling the Murine Acute Phase and Inflammatory Responses to African Snake Venom: An Approach to Inform Acute Snakebite Pathology.
    Alsolaiss J, Evans CA, Oluoch GO, Casewell NR, Harrison RA.
    Toxins (Basel); 2022 Mar 22; 14(4):. PubMed ID: 35448838
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Proteomic analysis of three medically important Nigerian Naja (Naja haje, Naja katiensis and Naja nigricollis) snake venoms.
    Adamude FA, Dingwoke EJ, Abubakar MS, Ibrahim S, Mohamed G, Klein A, Sallau AB.
    Toxicon; 2021 Jul 15; 197():24-32. PubMed ID: 33775665
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Inhibition of Sendai virus by various snake venom.
    Borkow G, Ovadia M.
    Life Sci; 1992 Jul 15; 51(16):1261-7. PubMed ID: 1328790
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.