These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 30558845

  • 21. Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography.
    Otte T, Pasch H, Macko T, Brüll R, Stadler FJ, Kaschta J, Becker F, Buback M.
    J Chromatogr A; 2011 Jul 08; 1218(27):4257-67. PubMed ID: 21238968
    [Abstract] [Full Text] [Related]

  • 22. On the retention mechanisms and secondary effects in microthermal field-flow fractionation of particles.
    Janca J, Stejskal J.
    J Chromatogr A; 2009 Dec 25; 1216(52):9071-80. PubMed ID: 19552912
    [Abstract] [Full Text] [Related]

  • 23. Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation.
    Guo S, Qiu BL, Zhu CQ, Yang YG, Wu D, Liang QH, Han NY.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Sep 15; 1031():1-7. PubMed ID: 27447927
    [Abstract] [Full Text] [Related]

  • 24. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.
    Dou H, Jung EC, Lee S.
    J Chromatogr A; 2015 May 08; 1393():115-21. PubMed ID: 25817708
    [Abstract] [Full Text] [Related]

  • 25. Determination of the functioning parameters in asymmetrical flow field-flow fractionation with an exponential channel.
    Déjardin P.
    J Chromatogr A; 2013 Aug 30; 1305():213-20. PubMed ID: 23885667
    [Abstract] [Full Text] [Related]

  • 26. Electrochemical response and separation in cyclic electric field-flow fractionation.
    Chen Z, Chauhan A.
    Electrophoresis; 2007 Mar 30; 28(5):724-39. PubMed ID: 17265539
    [Abstract] [Full Text] [Related]

  • 27. Practical implications of ionic strength effects on particle retention in thermal field-flow fractionation.
    Shiundu PM, Munguti SM, Ratanathanawongs Williams SK.
    J Chromatogr A; 2003 Jan 10; 984(1):67-79. PubMed ID: 12564677
    [Abstract] [Full Text] [Related]

  • 28. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation.
    Williams PS, Carpino F, Zborowski M.
    Philos Trans A Math Phys Eng Sci; 2010 Sep 28; 368(1927):4419-37. PubMed ID: 20732895
    [Abstract] [Full Text] [Related]

  • 29. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.
    Makan AC, Spallek MJ, du Toit M, Klein T, Pasch H.
    J Chromatogr A; 2016 Apr 15; 1442():94-106. PubMed ID: 26987415
    [Abstract] [Full Text] [Related]

  • 30. Characterization of a microscale thermal-electrical field-flow fractionation system.
    Sant HJ, Gale BK.
    J Chromatogr A; 2012 Feb 17; 1225():174-81. PubMed ID: 22226556
    [Abstract] [Full Text] [Related]

  • 31. Single walled carbon nanotube length determination by asymmetrical-flow field-flow fractionation hyphenated to multi-angle laser-light scattering.
    Gigault J, Le Hécho I, Dubascoux S, Potin-Gautier M, Lespes G.
    J Chromatogr A; 2010 Dec 10; 1217(50):7891-7. PubMed ID: 21055761
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. PEGylated gold nanorod separation based on aspect ratio: characterization by asymmetric-flow field flow fractionation with UV-Vis detection.
    Nguyen TM, Gigault J, Hackley VA.
    Anal Bioanal Chem; 2014 Feb 10; 406(6):1651-9. PubMed ID: 24005603
    [Abstract] [Full Text] [Related]

  • 34. Biased cyclical electrical field flow fractionation for separation of sub 50 nm particles.
    Tasci TO, Johnson WP, Fernandez DP, Manangon E, Gale BK.
    Anal Chem; 2013 Dec 03; 85(23):11225-32. PubMed ID: 24180262
    [Abstract] [Full Text] [Related]

  • 35. Micro-thermal field-flow fractionation of bacteria.
    Janca J, Kaspárková V, Halabalová V, Simek L, Růzicka J, Barosová E.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun 01; 852(1-2):512-8. PubMed ID: 17344106
    [Abstract] [Full Text] [Related]

  • 36. Retention ratio and nonequilibrium bandspreading in asymmetrical flow field-flow fractionation.
    Williams PS.
    Anal Bioanal Chem; 2015 Jun 01; 407(15):4327-38. PubMed ID: 25953429
    [Abstract] [Full Text] [Related]

  • 37. Explicit role of ionic strength in retention behavior of polystyrene latex particles in sedimentation field-flow fractionation: Slip boundary model.
    Rah K, Han S, Choi J, Eum CH, Lee S.
    J Chromatogr A; 2017 Dec 15; 1528():75-82. PubMed ID: 29126589
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Deposition Dynamics of Rod-Shaped Colloids during Transport in Porous Media under Favorable Conditions.
    Li K, Ma H.
    Langmuir; 2018 Mar 06; 34(9):2967-2980. PubMed ID: 29400469
    [Abstract] [Full Text] [Related]

  • 40. Retention behavior of microparticles in gravitational field-flow fractionation (GrFFF): effect of ionic strength.
    Woo IS, Jung EC, Lee S.
    Talanta; 2015 Jan 06; 132():945-53. PubMed ID: 25476401
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.