These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
193 related items for PubMed ID: 30566397
1. Mitochondrial localization of St14-encoding transmembrane serine protease is involved in neural stem/progenitor cell bioenergetics through binding to F0F1-ATP synthase complex. Fang JD, Tung HH, Lee SL. FASEB J; 2019 Mar; 33(3):4327-4340. PubMed ID: 30566397 [Abstract] [Full Text] [Related]
2. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility. Fang JD, Lee SL. Biochim Biophys Acta; 2014 Jul; 1843(7):1285-94. PubMed ID: 24685580 [Abstract] [Full Text] [Related]
3. HtrA2 deficiency causes mitochondrial uncoupling through the F₁F₀-ATP synthase and consequent ATP depletion. Plun-Favreau H, Burchell VS, Holmström KM, Yao Z, Deas E, Cain K, Fedele V, Moisoi N, Campanella M, Miguel Martins L, Wood NW, Gourine AV, Abramov AY. Cell Death Dis; 2012 Jun 28; 3(6):e335. PubMed ID: 22739987 [Abstract] [Full Text] [Related]
4. Neural transmembrane protease and endothelial Gs protein activation in cell contact-dependent signaling between neural stem/progenitor cells and brain endothelial cells. Tung HH, Lee SL. J Biol Chem; 2012 Jun 29; 287(27):22497-508. PubMed ID: 22577149 [Abstract] [Full Text] [Related]
5. Inorganic polyphosphate is produced and hydrolyzed in F0F1-ATP synthase of mammalian mitochondria. Baev AY, Angelova PR, Abramov AY. Biochem J; 2020 Apr 30; 477(8):1515-1524. PubMed ID: 32270854 [Abstract] [Full Text] [Related]
6. Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase. Ludtmann MH, Angelova PR, Ninkina NN, Gandhi S, Buchman VL, Abramov AY. J Neurosci; 2016 Oct 12; 36(41):10510-10521. PubMed ID: 27733604 [Abstract] [Full Text] [Related]
12. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid. Lübben M, Schäfer G. J Bacteriol; 1989 Nov 12; 171(11):6106-16. PubMed ID: 2478523 [Abstract] [Full Text] [Related]
13. Genetic control of oxidative phosphorylation and experimental models of defects. Trounce I. Hum Reprod; 2000 Jul 12; 15 Suppl 2():18-27. PubMed ID: 11041510 [Abstract] [Full Text] [Related]
14. Hypoxic preconditioning-induced mitochondrial protection is not disrupted in a cell model of mtDNA T8993G mutation-induced F1F0-ATP synthase defect: the role of mitochondrial permeability transition. Huang WY, Jou MJ, Peng TI. Free Radic Biol Med; 2014 Feb 12; 67():314-29. PubMed ID: 24291231 [Abstract] [Full Text] [Related]
15. Thermal inactivation of electron-transport functions and F0F1-ATPase activities. Tomita M, Knox BE, Tsong TY. Biochim Biophys Acta; 1987 Oct 29; 894(1):16-28. PubMed ID: 2889470 [Abstract] [Full Text] [Related]
18. A new model for mitochondrial membrane potential production and storage. Bagkos G, Koufopoulos K, Piperi C. Med Hypotheses; 2014 Aug 29; 83(2):175-81. PubMed ID: 24907229 [Abstract] [Full Text] [Related]
19. Bioenergetic and structural consequences of allotopic expression of subunit 8 of yeast mitochondrial ATP synthase. The hydrophobic character of residues 23 and 24 is essential for maximal activity and structural stability of the enzyme complex. Roucou X, Artika IM, Devenish RJ, Nagley P. Eur J Biochem; 1999 Apr 29; 261(2):444-51. PubMed ID: 10215855 [Abstract] [Full Text] [Related]