These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
415 related items for PubMed ID: 30567651
1. Facile synthesis of stable CdTe/CdS QDs using dithiol as surface ligand for alkaline phosphatase detection based on inner filter effect. Mao G, Zhang Q, Yang Y, Ji X, He Z. Anal Chim Acta; 2019 Jan 24; 1047():208-213. PubMed ID: 30567651 [Abstract] [Full Text] [Related]
2. Synthesis and characterization of novel bithiazolidine derivatives-capped CdTe/CdS quantum dots used as a novel Hg2+ fluorescence sensor. Hallaj R, Hosseinchi Z, Babamiri B, Zandi S. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun 05; 216():418-423. PubMed ID: 30927699 [Abstract] [Full Text] [Related]
3. Water-soluble MoS2 quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect. Zhong Y, Xue F, Wei P, Li R, Cao C, Yi T. Nanoscale; 2018 Dec 07; 10(45):21298-21306. PubMed ID: 30422141 [Abstract] [Full Text] [Related]
4. Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Guo Z, Zhu X, Wang S, Lei C, Huang Y, Nie Z, Yao S. Nanoscale; 2018 Nov 07; 10(41):19579-19585. PubMed ID: 30324953 [Abstract] [Full Text] [Related]
5. Fluorescence detection of adenosine-5'-triphosphate and alkaline phosphatase based on the generation of CdS quantum dots. Liu S, Wang X, Pang S, Na W, Yan X, Su X. Anal Chim Acta; 2014 May 27; 827():103-10. PubMed ID: 24833001 [Abstract] [Full Text] [Related]
6. Core-shell structured CdTe/CdS@SiO2 @CdTe@SiO2 composite fluorescent spheres: Synthesis and application for Cd2+ detection. Liu F, Li S, Hu R, Shao N. Luminescence; 2017 Aug 27; 32(5):723-729. PubMed ID: 27860110 [Abstract] [Full Text] [Related]
7. Ultraviolet radiation synthesis of water dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with high fluorescence strength and biocompatibility. Xu B, Cai B, Liu M, Fan H. Nanotechnology; 2013 May 24; 24(20):205601. PubMed ID: 23598608 [Abstract] [Full Text] [Related]
8. Ultrasensitive detection of amifostine and alkaline phosphatase based on the growth of CdS quantum dots. Na W, Liu S, Liu X, Su X. Talanta; 2015 Nov 01; 144():1059-64. PubMed ID: 26452927 [Abstract] [Full Text] [Related]
9. Molecular spectroscopic studies on the interactions of rhein and emodin with thioglycolic acid-capped core/shell CdTe/CdS quantum dots and their analytical applications. Li D, Liu S, Shen Y, Yang J, He Y. Luminescence; 2015 Feb 01; 30(1):60-6. PubMed ID: 24850622 [Abstract] [Full Text] [Related]
10. Nitrogen doped carbon dots for turn-off fluorescent detection of alkaline phosphatase activity based on inner filter effect. Zhang Y, Nie Y, Zhu R, Han D, Zhao H, Li Z. Talanta; 2019 Nov 01; 204():74-81. PubMed ID: 31357360 [Abstract] [Full Text] [Related]
11. Fluorescence quenching investigation on the interaction of glutathione-CdTe/CdS quantum dots with sanguinarine and its analytical application. Shen Y, Liu S, He Y. Luminescence; 2014 Mar 01; 29(2):176-82. PubMed ID: 23640753 [Abstract] [Full Text] [Related]
12. Facile and Sensitive Fluorescence Sensing of Alkaline Phosphatase Activity with Photoluminescent Carbon Dots Based on Inner Filter Effect. Li G, Fu H, Chen X, Gong P, Chen G, Xia L, Wang H, You J, Wu Y. Anal Chem; 2016 Mar 01; 88(5):2720-6. PubMed ID: 26820049 [Abstract] [Full Text] [Related]
13. Synthesis of water soluble CuGaS2/ZnS quantum dots for ultrasensitive fluorescent detection of alkaline phosphatase based on inner filter effect. Huangfu X, Shen Y, Yang A, Liu L, Luo W, Zhao W. Colloids Surf B Biointerfaces; 2020 Jul 01; 191():110984. PubMed ID: 32278281 [Abstract] [Full Text] [Related]
14. Microwave-assisted aqueous synthesis of highly luminescent carboxymethyl chitosan-coated CdTe/CdS quantum dots as fluorescent probe for live cell imaging. He Z, Zhu H, Zhou P. J Fluoresc; 2012 Jan 01; 22(1):193-9. PubMed ID: 21853257 [Abstract] [Full Text] [Related]
15. A novel fluorescence probing strategy for the determination of parathion-methyl. Yan X, Li H, Wang X, Su X. Talanta; 2015 Jan 01; 131():88-94. PubMed ID: 25281077 [Abstract] [Full Text] [Related]
16. CdTe QDs based fluorescent sensor for the determination of gallic acid in tea. Tan X, Li Q, Yang J. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan 05; 224():117356. PubMed ID: 31351422 [Abstract] [Full Text] [Related]
17. CdTe quantum dot-based fluorescent probes for selective detection of Hg (II): The effect of particle size. Zhu J, Zhao ZJ, Li JJ, Zhao JW. Spectrochim Acta A Mol Biomol Spectrosc; 2017 Apr 15; 177():140-146. PubMed ID: 28153811 [Abstract] [Full Text] [Related]
18. Aqueous synthesis of CdTe/CdS/ZnS quantum dots and their optical and chemical properties. Li Z, Dong C, Tang L, Zhu X, Chen H, Ren J. Luminescence; 2011 Apr 15; 26(6):439-48. PubMed ID: 20878652 [Abstract] [Full Text] [Related]
19. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Xia N, Zhou B, Huang N, Jiang M, Zhang J, Liu L. Biosens Bioelectron; 2016 Nov 15; 85():625-632. PubMed ID: 27240009 [Abstract] [Full Text] [Related]
20. An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine. Jin M, Mou ZL, Zhang RL, Liang SS, Zhang ZQ. Biosens Bioelectron; 2017 May 15; 91():162-168. PubMed ID: 28006684 [Abstract] [Full Text] [Related] Page: [Next] [New Search]