These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


375 related items for PubMed ID: 30572820

  • 1. Protein complexes identification based on go attributed network embedding.
    Xu B, Li K, Zheng W, Liu X, Zhang Y, Zhao Z, He Z.
    BMC Bioinformatics; 2018 Dec 20; 19(1):535. PubMed ID: 30572820
    [Abstract] [Full Text] [Related]

  • 2. Neighbor Affinity-Based Core-Attachment Method to Detect Protein Complexes in Dynamic PPI Networks.
    Lei X, Liang J.
    Molecules; 2017 Jul 24; 22(7):. PubMed ID: 28737728
    [Abstract] [Full Text] [Related]

  • 3. Identification of core-attachment complexes based on maximal frequent patterns in protein-protein interaction networks.
    Yu L, Gao L, Kong C.
    Proteomics; 2011 Oct 24; 11(19):3826-34. PubMed ID: 21761565
    [Abstract] [Full Text] [Related]

  • 4. Detection of protein complexes from multiple protein interaction networks using graph embedding.
    Liu X, Yang Z, Sang S, Lin H, Wang J, Xu B.
    Artif Intell Med; 2019 May 24; 96():107-115. PubMed ID: 31164203
    [Abstract] [Full Text] [Related]

  • 5. Identifying protein complexes based on brainstorming strategy.
    Shen X, Zhou J, Yi L, Hu X, He T, Yang J.
    Methods; 2016 Nov 01; 110():44-53. PubMed ID: 27405005
    [Abstract] [Full Text] [Related]

  • 6. DPCMNE: Detecting Protein Complexes From Protein-Protein Interaction Networks Via Multi-Level Network Embedding.
    Meng X, Xiang J, Zheng R, Wu FX, Li M.
    IEEE/ACM Trans Comput Biol Bioinform; 2022 Nov 01; 19(3):1592-1602. PubMed ID: 33417563
    [Abstract] [Full Text] [Related]

  • 7. Protein complex prediction in large ontology attributed protein-protein interaction networks.
    Zhang Y, Lin H, Yang Z, Wang J, Li Y, Xu B.
    IEEE/ACM Trans Comput Biol Bioinform; 2013 Nov 01; 10(3):729-41. PubMed ID: 24091405
    [Abstract] [Full Text] [Related]

  • 8. Discovering protein complexes in protein interaction networks via exploring the weak ties effect.
    Ma X, Gao L.
    BMC Syst Biol; 2012 Nov 01; 6 Suppl 1(Suppl 1):S6. PubMed ID: 23046740
    [Abstract] [Full Text] [Related]

  • 9. Protein complex prediction via dense subgraphs and false positive analysis.
    Hernandez C, Mella C, Navarro G, Olivera-Nappa A, Araya J.
    PLoS One; 2017 Nov 01; 12(9):e0183460. PubMed ID: 28937982
    [Abstract] [Full Text] [Related]

  • 10. A Novel Core-Attachment-Based Method to Identify Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks.
    Xiao Q, Luo P, Li M, Wang J, Wu FX.
    Proteomics; 2019 Mar 01; 19(5):e1800129. PubMed ID: 30650262
    [Abstract] [Full Text] [Related]

  • 11. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.
    Peng W, Wang J, Zhao B, Wang L.
    IEEE/ACM Trans Comput Biol Bioinform; 2015 Mar 01; 12(1):179-92. PubMed ID: 26357088
    [Abstract] [Full Text] [Related]

  • 12. An efficient protein complex mining algorithm based on Multistage Kernel Extension.
    Shen X, Zhao Y, Li Y, He T, Yang J, Hu X.
    BMC Bioinformatics; 2014 Mar 01; 15 Suppl 12(Suppl 12):S7. PubMed ID: 25474367
    [Abstract] [Full Text] [Related]

  • 13. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.
    Cao B, Luo J, Liang C, Wang S, Song D.
    Comput Biol Chem; 2015 Oct 01; 58():173-81. PubMed ID: 26298638
    [Abstract] [Full Text] [Related]

  • 14. MCL-CAw: a refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure.
    Srihari S, Ning K, Leong HW.
    BMC Bioinformatics; 2010 Oct 12; 11():504. PubMed ID: 20939868
    [Abstract] [Full Text] [Related]

  • 15. A density-based clustering approach for identifying overlapping protein complexes with functional preferences.
    Hu L, Chan KC.
    BMC Bioinformatics; 2015 May 27; 16():174. PubMed ID: 26013799
    [Abstract] [Full Text] [Related]

  • 16. Identification of protein complexes from multi-relationship protein interaction networks.
    Li X, Wang J, Zhao B, Wu FX, Pan Y.
    Hum Genomics; 2016 Jul 25; 10 Suppl 2(Suppl 2):17. PubMed ID: 27461193
    [Abstract] [Full Text] [Related]

  • 17. A supervised protein complex prediction method with network representation learning and gene ontology knowledge.
    Wang X, Zhang Y, Zhou P, Liu X.
    BMC Bioinformatics; 2022 Jul 25; 23(1):300. PubMed ID: 35879648
    [Abstract] [Full Text] [Related]

  • 18. Improving protein complex prediction by reconstructing a high-confidence protein-protein interaction network of Escherichia coli from different physical interaction data sources.
    Taghipour S, Zarrineh P, Ganjtabesh M, Nowzari-Dalini A.
    BMC Bioinformatics; 2017 Jan 03; 18(1):10. PubMed ID: 28049415
    [Abstract] [Full Text] [Related]

  • 19. Detecting protein complexes in a PPI network: a gene ontology based multi-objective evolutionary approach.
    Mukhopadhyay A, Ray S, De M.
    Mol Biosyst; 2012 Nov 03; 8(11):3036-48. PubMed ID: 22990765
    [Abstract] [Full Text] [Related]

  • 20. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C, Theofilatos K, Pegkas A, Likothanassis S, Mavroudi S.
    Artif Intell Med; 2016 Jul 03; 71():62-9. PubMed ID: 27506132
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.