These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
292 related items for PubMed ID: 30578261
1. Extremely Thermoacidophilic Metallosphaera Species Mediate Mobilization and Oxidation of Vanadium and Molybdenum Oxides. Wheaton GH, Vitko NP, Counts JA, Dulkis JA, Podolsky I, Mukherjee A, Kelly RM. Appl Environ Microbiol; 2019 Mar 01; 85(5):. PubMed ID: 30578261 [Abstract] [Full Text] [Related]
2. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Wheaton GH, Mukherjee A, Kelly RM. Appl Environ Microbiol; 2016 Aug 01; 82(15):4613-4627. PubMed ID: 27208114 [Abstract] [Full Text] [Related]
3. Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic Metallosphaera species. Mukherjee A, Wheaton GH, Blum PH, Kelly RM. Proc Natl Acad Sci U S A; 2012 Oct 09; 109(41):16702-7. PubMed ID: 23010932 [Abstract] [Full Text] [Related]
4. Increased chalcopyrite bioleaching capabilities of extremely thermoacidophilic Metallosphaera sedula inocula by mixotrophic propagation. Ai C, Yan Z, Chai H, Gu T, Wang J, Chai L, Qiu G, Zeng W. J Ind Microbiol Biotechnol; 2019 Aug 09; 46(8):1113-1127. PubMed ID: 31165968 [Abstract] [Full Text] [Related]
5. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Auernik KS, Maezato Y, Blum PH, Kelly RM. Appl Environ Microbiol; 2008 Feb 09; 74(3):682-92. PubMed ID: 18083856 [Abstract] [Full Text] [Related]
6. Chalcopyrite bioleaching efficacy by extremely thermoacidophilic archaea leverages balanced iron and sulfur biooxidation. Manesh MJH, Willard DJ, John KM, Kelly RM. Bioresour Technol; 2024 Sep 09; 408():131198. PubMed ID: 39097239 [Abstract] [Full Text] [Related]
7. Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes. Auernik KS, Kelly RM. Appl Environ Microbiol; 2008 Dec 09; 74(24):7723-32. PubMed ID: 18931292 [Abstract] [Full Text] [Related]
8. VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae. Mukherjee A, Wheaton GH, Counts JA, Ijeomah B, Desai J, Kelly RM. Environ Microbiol; 2017 Jul 09; 19(7):2831-2842. PubMed ID: 28585353 [Abstract] [Full Text] [Related]
9. Complete genome sequence of Metallosphaera cuprina, a metal sulfide-oxidizing archaeon from a hot spring. Liu LJ, You XY, Zheng H, Wang S, Jiang CY, Liu SJ. J Bacteriol; 2011 Jul 09; 193(13):3387-8. PubMed ID: 21551305 [Abstract] [Full Text] [Related]
10. Physiological versatility of the extremely thermoacidophilic archaeon Metallosphaera sedula supported by transcriptomic analysis of heterotrophic, autotrophic, and mixotrophic growth. Auernik KS, Kelly RM. Appl Environ Microbiol; 2010 Feb 09; 76(3):931-5. PubMed ID: 20008169 [Abstract] [Full Text] [Related]
11. Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile. McCarthy S, Ai C, Wheaton G, Tevatia R, Eckrich V, Kelly R, Blum P. J Bacteriol; 2014 Oct 09; 196(20):3562-70. PubMed ID: 25092032 [Abstract] [Full Text] [Related]
12. Phenotype-driven assessment of the ancestral trajectory of sulfur biooxidation in the thermoacidophilic archaea Sulfolobaceae. Willard DJ, H Manesh MJ, Bing RG, Alexander BH, Kelly RM. mBio; 2024 Aug 14; 15(8):e0103324. PubMed ID: 38953360 [Abstract] [Full Text] [Related]
13. Increased acid resistance of the archaeon, Metallosphaera sedula by adaptive laboratory evolution. Ai C, McCarthy S, Eckrich V, Rudrappa D, Qiu G, Blum P. J Ind Microbiol Biotechnol; 2016 Oct 14; 43(10):1455-65. PubMed ID: 27520549 [Abstract] [Full Text] [Related]
14. Fox Cluster determinants for iron biooxidation in the extremely thermoacidophilic Sulfolobaceae. Counts JA, Vitko NP, Kelly RM. Environ Microbiol; 2022 Feb 14; 24(2):850-865. PubMed ID: 34406696 [Abstract] [Full Text] [Related]
15. Impact of molecular hydrogen on chalcopyrite bioleaching by the extremely thermoacidophilic archaeon Metallosphaera sedula. Auernik KS, Kelly RM. Appl Environ Microbiol; 2010 Apr 14; 76(8):2668-72. PubMed ID: 20190092 [Abstract] [Full Text] [Related]
16. Metal resistance and lithoautotrophy in the extreme thermoacidophile Metallosphaera sedula. Maezato Y, Johnson T, McCarthy S, Dana K, Blum P. J Bacteriol; 2012 Dec 14; 194(24):6856-63. PubMed ID: 23065978 [Abstract] [Full Text] [Related]
17. Terminal oxidase diversity and function in "Metallosphaera yellowstonensis": gene expression and protein modeling suggest mechanisms of Fe(II) oxidation in the sulfolobales. Kozubal MA, Dlakic M, Macur RE, Inskeep WP. Appl Environ Microbiol; 2011 Mar 14; 77(5):1844-53. PubMed ID: 21239558 [Abstract] [Full Text] [Related]
18. Respiratory gene clusters of Metallosphaera sedula - differential expression and transcriptional organization. Kappler U, Sly LI, McEwan AG. Microbiology (Reading); 2005 Jan 14; 151(Pt 1):35-43. PubMed ID: 15632423 [Abstract] [Full Text] [Related]
19. Inorganic Polyphosphate, Exopolyphosphatase, and Pho84-Like Transporters May Be Involved in Copper Resistance in Metallosphaera sedula DSM 5348T. Rivero M, Torres-Paris C, Muñoz R, Cabrera R, Navarro CA, Jerez CA. Archaea; 2018 Jan 14; 2018():5251061. PubMed ID: 29692683 [Abstract] [Full Text] [Related]
20. Role of 4-hydroxybutyrate-CoA synthetase in the CO2 fixation cycle in thermoacidophilic archaea. Hawkins AS, Han Y, Bennett RK, Adams MW, Kelly RM. J Biol Chem; 2013 Feb 08; 288(6):4012-22. PubMed ID: 23258541 [Abstract] [Full Text] [Related] Page: [Next] [New Search]