These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
271 related items for PubMed ID: 30578862
1. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: A new tool for engineering ketocarotenoids. Nogueira M, Enfissi EMA, Welsch R, Beyer P, Zurbriggen MD, Fraser PD. Metab Eng; 2019 Mar; 52():243-252. PubMed ID: 30578862 [Abstract] [Full Text] [Related]
2. Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli. Li D, Li Y, Xu JY, Li QY, Tang JL, Jia SR, Bi CH, Dai ZB, Zhu XN, Zhang XL. Chin J Nat Med; 2020 Sep; 18(9):666-676. PubMed ID: 32928510 [Abstract] [Full Text] [Related]
4. Combinatorial expression of different β-carotene hydroxylases and ketolases in Escherichia coli for increased astaxanthin production. Wu Y, Yan P, Liu X, Wang Z, Tang YJ, Chen T, Zhao X. J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1505-1516. PubMed ID: 31297712 [Abstract] [Full Text] [Related]
5. Characterization of bacterial beta-carotene 3,3'-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in Escherichia coli. Choi SK, Matsuda S, Hoshino T, Peng X, Misawa N. Appl Microbiol Biotechnol; 2006 Oct; 72(6):1238-46. PubMed ID: 16614859 [Abstract] [Full Text] [Related]
6. Reconstruction of the astaxanthin biosynthesis pathway in rice endosperm reveals a metabolic bottleneck at the level of endogenous β-carotene hydroxylase activity. Bai C, Berman J, Farre G, Capell T, Sandmann G, Christou P, Zhu C. Transgenic Res; 2017 Feb; 26(1):13-23. PubMed ID: 27567632 [Abstract] [Full Text] [Related]
7. In vitro characterization of astaxanthin biosynthetic enzymes. Fraser PD, Miura Y, Misawa N. J Biol Chem; 1997 Mar 07; 272(10):6128-35. PubMed ID: 9045623 [Abstract] [Full Text] [Related]
8. Metabolic Engineering of Escherichia coli for Producing Astaxanthin as the Predominant Carotenoid. Lu Q, Bu YF, Liu JZ. Mar Drugs; 2017 Sep 22; 15(10):. PubMed ID: 28937591 [Abstract] [Full Text] [Related]
9. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Hasunuma T, Miyazawa S, Yoshimura S, Shinzaki Y, Tomizawa K, Shindo K, Choi SK, Misawa N, Miyake C. Plant J; 2008 Sep 22; 55(5):857-68. PubMed ID: 18494855 [Abstract] [Full Text] [Related]
10. Improved Astaxanthin Production with Corynebacterium glutamicum by Application of a Membrane Fusion Protein. Henke NA, Wendisch VF. Mar Drugs; 2019 Oct 31; 17(11):. PubMed ID: 31683510 [Abstract] [Full Text] [Related]
13. Product stability and sequestration mechanisms in Solanum tuberosum engineered to biosynthesize high value ketocarotenoids. Mortimer CL, Misawa N, Ducreux L, Campbell R, Bramley PM, Taylor M, Fraser PD. Plant Biotechnol J; 2016 Jan 31; 14(1):140-52. PubMed ID: 25845905 [Abstract] [Full Text] [Related]
14. Stepwise pathway engineering to the biosynthesis of zeaxanthin, astaxanthin and capsanthin in rice endosperm. Ha SH, Kim JK, Jeong YS, You MK, Lim SH, Kim JK. Metab Eng; 2019 Mar 31; 52():178-189. PubMed ID: 30503392 [Abstract] [Full Text] [Related]
19. Metabolic engineering of tomato for high-yield production of astaxanthin. Huang JC, Zhong YJ, Liu J, Sandmann G, Chen F. Metab Eng; 2013 May 01; 17():59-67. PubMed ID: 23511430 [Abstract] [Full Text] [Related]
20. Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls. Misawa N. Mar Drugs; 2011 May 01; 9(5):757-771. PubMed ID: 21673887 [Abstract] [Full Text] [Related] Page: [Next] [New Search]