These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
307 related items for PubMed ID: 30580099
1. Identification of a novel function of hepatic long-chain acyl-CoA synthetase-1 (ACSL1) in bile acid synthesis and its regulation by bile acid-activated farnesoid X receptor. Singh AB, Dong B, Xu Y, Zhang Y, Liu J. Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Mar; 1864(3):358-371. PubMed ID: 30580099 [Abstract] [Full Text] [Related]
2. SREBP2 Activation Induces Hepatic Long-chain Acyl-CoA Synthetase 1 (ACSL1) Expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter. Singh AB, Kan CF, Dong B, Liu J. J Biol Chem; 2016 Mar 04; 291(10):5373-84. PubMed ID: 26728456 [Abstract] [Full Text] [Related]
3. Protective effects of farnesoid X receptor (FXR) on hepatic lipid accumulation are mediated by hepatic FXR and independent of intestinal FGF15 signal. Schmitt J, Kong B, Stieger B, Tschopp O, Schultze SM, Rau M, Weber A, Müllhaupt B, Guo GL, Geier A. Liver Int; 2015 Apr 04; 35(4):1133-1144. PubMed ID: 25156247 [Abstract] [Full Text] [Related]
4. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. Pathak P, Liu H, Boehme S, Xie C, Krausz KW, Gonzalez F, Chiang JYL. J Biol Chem; 2017 Jun 30; 292(26):11055-11069. PubMed ID: 28478385 [Abstract] [Full Text] [Related]
5. Lactoferrin promotes bile acid metabolism and reduces hepatic cholesterol deposition by inhibiting the farnesoid X receptor (FXR)-mediated enterohepatic axis. Ling CJ, Xu JY, Li YH, Tong X, Yang HH, Yang J, Yuan LX, Qin LQ. Food Funct; 2019 Nov 01; 10(11):7299-7307. PubMed ID: 31626262 [Abstract] [Full Text] [Related]
6. Farnesoid X Receptor Activation Promotes Hepatic Amino Acid Catabolism and Ammonium Clearance in Mice. Massafra V, Milona A, Vos HR, Ramos RJJ, Gerrits J, Willemsen ECL, Ramos Pittol JM, Ijssennagger N, Houweling M, Prinsen HCMT, Verhoeven-Duif NM, Burgering BMT, van Mil SWC. Gastroenterology; 2017 May 01; 152(6):1462-1476.e10. PubMed ID: 28130067 [Abstract] [Full Text] [Related]
7. Farnesoid X Receptor Activation by Obeticholic Acid Elevates Liver Low-Density Lipoprotein Receptor Expression by mRNA Stabilization and Reduces Plasma Low-Density Lipoprotein Cholesterol in Mice. Singh AB, Dong B, Kraemer FB, Xu Y, Zhang Y, Liu J. Arterioscler Thromb Vasc Biol; 2018 Oct 01; 38(10):2448-2459. PubMed ID: 30354208 [Abstract] [Full Text] [Related]
8. Orally Administered Berberine Modulates Hepatic Lipid Metabolism by Altering Microbial Bile Acid Metabolism and the Intestinal FXR Signaling Pathway. Sun R, Yang N, Kong B, Cao B, Feng D, Yu X, Ge C, Huang J, Shen J, Wang P, Feng S, Fei F, Guo J, He J, Aa N, Chen Q, Pan Y, Schumacher JD, Yang CS, Guo GL, Aa J, Wang G. Mol Pharmacol; 2017 Feb 01; 91(2):110-122. PubMed ID: 27932556 [Abstract] [Full Text] [Related]
9. Deficiency of Both Farnesoid X Receptor and Takeda G Protein-Coupled Receptor 5 Exacerbated Liver Fibrosis in Mice. Ferrell JM, Pathak P, Boehme S, Gilliland T, Chiang JYL. Hepatology; 2019 Sep 01; 70(3):955-970. PubMed ID: 30664797 [Abstract] [Full Text] [Related]
10. Cholesterol-lowering effects of taurine through the reduction of ileal FXR signaling due to the alteration of ileal bile acid composition. Miyata M, Tanaka T, Takahashi K, Funaki A, Sugiura Y. Amino Acids; 2021 Oct 01; 53(10):1523-1532. PubMed ID: 34596761 [Abstract] [Full Text] [Related]
11. Roux-en-Y Gastric Bypass Improves Metabolic Conditions in Association with Increased Serum Bile Acids Level and Hepatic Farnesoid X Receptor Expression in a T2DM Rat Model. Yan Y, Sha Y, Huang X, Yuan W, Wu F, Hong J, Fang S, Huang B, Hu C, Wang B, Zhang X. Obes Surg; 2019 Sep 01; 29(9):2912-2922. PubMed ID: 31079286 [Abstract] [Full Text] [Related]
12. FXR-dependent reduction of hepatic steatosis in a bile salt deficient mouse model. Kunne C, Acco A, Duijst S, de Waart DR, Paulusma CC, Gaemers I, Oude Elferink RP. Biochim Biophys Acta; 2014 May 01; 1842(5):739-46. PubMed ID: 24548803 [Abstract] [Full Text] [Related]
13. Liver-specific knockdown of long-chain acyl-CoA synthetase 4 reveals its key role in VLDL-TG metabolism and phospholipid synthesis in mice fed a high-fat diet. Singh AB, Kan CFK, Kraemer FB, Sobel RA, Liu J. Am J Physiol Endocrinol Metab; 2019 May 01; 316(5):E880-E894. PubMed ID: 30721098 [Abstract] [Full Text] [Related]
14. Coordinated control of bile acids and lipogenesis through FXR-dependent regulation of fatty acid synthase. Matsukuma KE, Bennett MK, Huang J, Wang L, Gil G, Osborne TF. J Lipid Res; 2006 Dec 01; 47(12):2754-61. PubMed ID: 16957179 [Abstract] [Full Text] [Related]
15. Effects of essential fatty acid deficiency on enterohepatic circulation of bile salts in mice. Lukovac S, Los EL, Stellaard F, Rings EH, Verkade HJ. Am J Physiol Gastrointest Liver Physiol; 2009 Sep 01; 297(3):G520-31. PubMed ID: 19608735 [Abstract] [Full Text] [Related]
16. Heterozygous knockout of Bile salt export pump ameliorates liver steatosis in mice fed a high-fat diet. Okushin K, Tsutsumi T, Ikeuchi K, Kado A, Enooku K, Fujinaga H, Yamauchi N, Ushiku T, Moriya K, Yotsuyanagi H, Koike K. PLoS One; 2020 Sep 01; 15(8):e0234750. PubMed ID: 32785220 [Abstract] [Full Text] [Related]
17. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Rao A, Kosters A, Mells JE, Zhang W, Setchell KD, Amanso AM, Wynn GM, Xu T, Keller BT, Yin H, Banton S, Jones DP, Wu H, Dawson PA, Karpen SJ. Sci Transl Med; 2016 Sep 21; 8(357):357ra122. PubMed ID: 27655848 [Abstract] [Full Text] [Related]
18. Trimethylamine N-Oxide Aggravates Liver Steatosis through Modulation of Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease. Tan X, Liu Y, Long J, Chen S, Liao G, Wu S, Li C, Wang L, Ling W, Zhu H. Mol Nutr Food Res; 2019 Sep 21; 63(17):e1900257. PubMed ID: 31095863 [Abstract] [Full Text] [Related]
19. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. Li LO, Ellis JM, Paich HA, Wang S, Gong N, Altshuller G, Thresher RJ, Koves TR, Watkins SM, Muoio DM, Cline GW, Shulman GI, Coleman RA. J Biol Chem; 2009 Oct 09; 284(41):27816-27826. PubMed ID: 19648649 [Abstract] [Full Text] [Related]
20. Defective fatty acid oxidation in mice with muscle-specific acyl-CoA synthetase 1 deficiency increases amino acid use and impairs muscle function. Zhao L, Pascual F, Bacudio L, Suchanek AL, Young PA, Li LO, Martin SA, Camporez JP, Perry RJ, Shulman GI, Klett EL, Coleman RA. J Biol Chem; 2019 May 31; 294(22):8819-8833. PubMed ID: 30975900 [Abstract] [Full Text] [Related] Page: [Next] [New Search]