These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. Ferreira L, Perestrelo R, Caldeira M, Câmara JS. J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016 [Abstract] [Full Text] [Related]
3. Gas chromatography and isotope ratio mass spectrometry of Pinot Noir wine volatile compounds (δ13C) and solid residues (δ13C, δ15N) for the reassessment of vineyard water-status. Spangenberg JE, Vogiatzaki M, Zufferey V. J Chromatogr A; 2017 Sep 29; 1517():142-155. PubMed ID: 28851526 [Abstract] [Full Text] [Related]
4. Optimization and application of headspace-solid-phase micro-extraction coupled with gas chromatography-mass spectrometry for the determination of volatile compounds in cherry wines. Xiao Z, Zhou X, Niu Y, Yu D, Zhu J, Zhu G. J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan 26; 978-979():122-30. PubMed ID: 25544009 [Abstract] [Full Text] [Related]
5. Headspace-solid phase microextraction coupled to gas chromatography-combustion-isotope ratio mass spectrometer and to enantioselective gas chromatography for strawberry flavoured food quality control. Schipilliti L, Dugo P, Bonaccorsi I, Mondello L. J Chromatogr A; 2011 Oct 21; 1218(42):7481-6. PubMed ID: 21872872 [Abstract] [Full Text] [Related]
6. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines--a comparative study. Mendes B, Gonçalves J, Câmara JS. Talanta; 2012 Jan 15; 88():79-94. PubMed ID: 22265473 [Abstract] [Full Text] [Related]
7. Optimization of the extraction conditions of the volatile compounds from chili peppers by headspace solid phase micro-extraction. Junior SB, de Marchi Tavares de Melo A, Zini CA, Godoy HT. J Chromatogr A; 2011 May 27; 1218(21):3345-50. PubMed ID: 21227437 [Abstract] [Full Text] [Related]
8. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines. Paula Barros E, Moreira N, Elias Pereira G, Leite SG, Moraes Rezende C, Guedes de Pinho P. Talanta; 2012 Nov 15; 101():177-86. PubMed ID: 23158309 [Abstract] [Full Text] [Related]
10. Chemical Approach to the Optimization of Conditions Using HS-SPME/GC-MS for Characterization of Volatile Compounds in Eugenia brasiliensis Fruit. Ramos ALCC, Nogueira LA, Silva MR, do Carmo Mazzinghy AC, Mariano APX, de Albuquerque Rodrigues TN, de Paula ACCFF, de Melo AC, Augusti R, de Araújo RLB, Lacerda ICA, Melo JOF. Molecules; 2022 Aug 04; 27(15):. PubMed ID: 35956905 [Abstract] [Full Text] [Related]
14. Comparison of headspace solid-phase microextraction with conventional extraction for the analysis of the volatile components in Melia azedarach. Yang Y, Xiao Y, Liu B, Fang X, Yang W, Xu J. Talanta; 2011 Oct 30; 86():356-61. PubMed ID: 22063551 [Abstract] [Full Text] [Related]
16. Analysis of the volatile compounds in Ligusticum chuanxiong Hort. using HS-SPME-GC-MS. Zhang C, Qi M, Shao Q, Zhou S, Fu R. J Pharm Biomed Anal; 2007 Jun 28; 44(2):464-70. PubMed ID: 17306492 [Abstract] [Full Text] [Related]
17. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens. Souza Silva ÉA, Saboia G, Jorge NC, Hoffmann C, Dos Santos Isaias RM, Soares GLG, Zini CA. Talanta; 2017 Dec 01; 175():9-20. PubMed ID: 28842040 [Abstract] [Full Text] [Related]
18. Headspace Solid Phase Microextraction Coupled to GC/MS for the Analysis of Volatiles of Honeys from Arid and Mediterranean Areas of Algeria. Neggad A, Benkaci-Ali F, Alsafra Z, Eppe G. Chem Biodivers; 2019 Oct 01; 16(10):e1900267. PubMed ID: 31419038 [Abstract] [Full Text] [Related]
19. Characterization and classification of Western Greek olive oils according to cultivar and geographical origin based on volatile compounds. Pouliarekou E, Badeka A, Tasioula-Margari M, Kontakos S, Longobardi F, Kontominas MG. J Chromatogr A; 2011 Oct 21; 1218(42):7534-42. PubMed ID: 21871634 [Abstract] [Full Text] [Related]
20. Analysis of volatile components of cape gooseberry (Physalis peruviana L.) grown in Turkey by HS-SPME and GC-MS. Yilmaztekin M. ScientificWorldJournal; 2014 Oct 21; 2014():796097. PubMed ID: 24741358 [Abstract] [Full Text] [Related] Page: [Next] [New Search]