These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 30594056

  • 1. The enhancement of surface activity and nanoparticle stability through the alteration of charged amino acids of HGFI.
    Yang J, Wang B, Ge L, Yang X, Wang X, Dai Y, Niu B, Xu H, Qiao M.
    Colloids Surf B Biointerfaces; 2019 Mar 01; 175():703-712. PubMed ID: 30594056
    [Abstract] [Full Text] [Related]

  • 2. The functional role of Cys3-Cys4 loop in hydrophobin HGFI.
    Niu B, Gong Y, Gao X, Xu H, Qiao M, Li W.
    Amino Acids; 2014 Nov 01; 46(11):2615-25. PubMed ID: 25240738
    [Abstract] [Full Text] [Related]

  • 3. A mutant of hydrophobin HGFI tuning the self-assembly behaviour and biosurfactant activity.
    Wang X, Song D, Wang B, Yang J, Ge L, Zhao L, Xu H, Qiao M.
    Appl Microbiol Biotechnol; 2017 Dec 01; 101(23-24):8419-8430. PubMed ID: 29075828
    [Abstract] [Full Text] [Related]

  • 4. High-yield fermentation and a novel heat-precipitation purification method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris.
    Song D, Gao Z, Zhao L, Wang X, Xu H, Bai Y, Zhang X, Linder MB, Feng H, Qiao M.
    Protein Expr Purif; 2016 Dec 01; 128():22-8. PubMed ID: 27474238
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers.
    Yu L, Zhang B, Szilvay GR, Sun R, Jänis J, Wang Z, Feng S, Xu H, Linder MB, Qiao M.
    Microbiology (Reading); 2008 Jun 01; 154(Pt 6):1677-1685. PubMed ID: 18524922
    [Abstract] [Full Text] [Related]

  • 7. Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin.
    Niu B, Li B, Wang H, Guo R, Xu H, Qiao M, Li W.
    Colloids Surf B Biointerfaces; 2017 Feb 01; 150():344-351. PubMed ID: 27842929
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Expression and characterization of a Grifola frondosa hydrophobin in Pichia pastoris.
    Wang Z, Feng S, Huang Y, Li S, Xu H, Zhang X, Bai Y, Qiao M.
    Protein Expr Purif; 2010 Jul 01; 72(1):19-25. PubMed ID: 20347985
    [Abstract] [Full Text] [Related]

  • 10. Class I hydrophobin fusion with cellulose binding domain for its soluble expression and facile purification.
    Puspitasari N, Lee CK.
    Int J Biol Macromol; 2021 Dec 15; 193(Pt A):38-43. PubMed ID: 34688673
    [Abstract] [Full Text] [Related]

  • 11. Expression and characterization of hydrophobin HGFI fused with the cell-specific peptide TPS in Pichia pastoris.
    Niu B, Huang Y, Zhang S, Wang D, Xu H, Kong D, Qiao M.
    Protein Expr Purif; 2012 May 15; 83(1):92-7. PubMed ID: 22440542
    [Abstract] [Full Text] [Related]

  • 12. A novel hydrophobin encoded by hgfII from Grifola frondosa exhibiting excellent self-assembly ability.
    Yang J, Ge L, Song B, Ma Z, Yang X, Wang B, Dai Y, Xu H, Qiao M.
    Front Microbiol; 2022 May 15; 13():990231. PubMed ID: 36160239
    [Abstract] [Full Text] [Related]

  • 13. COMPARATIVE PHYSIOCHEMICAL ANALYSIS OF HYDROPHOBINS PRODUCED IN ESCHERICHIA COLI AND PICHIA PASTORIS.
    Przylucka A, Akcapinar GB, Bonazza K, Mello-de-Sousa TM, Mach-Aigner AR, Lobanov V, Grothe H, Kubicek CP, Reimhult E, Druzhinina IS.
    Colloids Surf B Biointerfaces; 2017 Nov 01; 159():913-923. PubMed ID: 28903187
    [Abstract] [Full Text] [Related]

  • 14. Prokaryotic expression, purification, and polyclonal antibody production of a hydrophobin from Grifola frondosa.
    Wang Z, Feng S, Huang Y, Qiao M, Zhang B, Xu H.
    Acta Biochim Biophys Sin (Shanghai); 2010 Jun 15; 42(6):388-95. PubMed ID: 20539938
    [Abstract] [Full Text] [Related]

  • 15. Involvement of hydrophobic amino acid residues in C7-C8 loop of Aspergillus oryzae hydrophobin RolA in hydrophobic interaction between RolA and a polyester.
    Tanaka T, Tanabe H, Uehara K, Takahashi T, Abe K.
    Biosci Biotechnol Biochem; 2014 Jun 15; 78(10):1693-9. PubMed ID: 25273133
    [Abstract] [Full Text] [Related]

  • 16. Surface modification using a novel type I hydrophobin HGFI.
    Hou S, Li X, Li X, Feng XZ, Wang R, Wang C, Yu L, Qiao MQ.
    Anal Bioanal Chem; 2009 Jun 15; 394(3):783-9. PubMed ID: 19370343
    [Abstract] [Full Text] [Related]

  • 17. Adsorption Kinetics and Self-Assembled Structures of Aspergillus oryzae Hydrophobin RolA on Hydrophobic and Charged Solid Surfaces.
    Terauchi Y, Nagayama M, Tanaka T, Tanabe H, Yoshimi A, Nanatani K, Yabu H, Arita T, Higuchi T, Kameda T, Abe K.
    Appl Environ Microbiol; 2022 Mar 22; 88(6):e0208721. PubMed ID: 35108098
    [Abstract] [Full Text] [Related]

  • 18. Heterologous expression of a hydrophobin HFB1 and evaluation of its contribution to producing stable foam.
    Lohrasbi-Nejad A, Torkzadeh-Mahani M, Hosseinkhani S.
    Protein Expr Purif; 2016 Feb 22; 118():25-30. PubMed ID: 26431799
    [Abstract] [Full Text] [Related]

  • 19. Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces.
    Cheng Y, Wang B, Wang Y, Zhang H, Liu C, Yang L, Chen Z, Wang Y, Yang H, Wang Z.
    J Colloid Interface Sci; 2020 Aug 01; 573():384-395. PubMed ID: 32298932
    [Abstract] [Full Text] [Related]

  • 20. Ionic interaction of positive amino acid residues of fungal hydrophobin RolA with acidic amino acid residues of cutinase CutL1.
    Takahashi T, Tanaka T, Tsushima Y, Muragaki K, Uehara K, Takeuchi S, Maeda H, Yamagata Y, Nakayama M, Yoshimi A, Abe K.
    Mol Microbiol; 2015 Apr 01; 96(1):14-27. PubMed ID: 25588312
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.