These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
325 related items for PubMed ID: 30594754
1. Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Chandrasekhar C, Ray JG. Ecotoxicol Environ Saf; 2019 Apr 30; 171():26-36. PubMed ID: 30594754 [Abstract] [Full Text] [Related]
2. Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil. Begonia MT, Begonia GB, Ighoavodha M, Gilliard D. Int J Environ Res Public Health; 2005 Aug 30; 2(2):228-33. PubMed ID: 16705822 [Abstract] [Full Text] [Related]
3. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Mukhopadhyay S, Rana V, Kumar A, Maiti SK. Environ Sci Pollut Res Int; 2017 Oct 30; 24(29):22990-23005. PubMed ID: 28819831 [Abstract] [Full Text] [Related]
4. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil. Cui S, Zhang T, Zhao S, Li P, Zhou Q, Zhang Q, Han Q. Int J Phytoremediation; 2013 Oct 30; 15(4):299-306. PubMed ID: 23487996 [Abstract] [Full Text] [Related]
5. Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.). Paz-Alberto AM, Sigua GC, Baui BG, Prudente JA. Environ Sci Pollut Res Int; 2007 Nov 30; 14(7):498-504. PubMed ID: 18062482 [Abstract] [Full Text] [Related]
6. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M. Environ Sci Pollut Res Int; 2015 Sep 30; 22(17):13179-93. PubMed ID: 25929455 [Abstract] [Full Text] [Related]
7. Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. Souza LA, Andrade SA, Souza SC, Schiavinato MA. Int J Phytoremediation; 2013 Sep 30; 15(5):465-76. PubMed ID: 23488172 [Abstract] [Full Text] [Related]
8. Lead uptake increases drought tolerance of wild type and transgenic poplar (Populus tremula x P. alba) overexpressing gsh 1. Samuilov S, Lang F, Djukic M, Djunisijevic-Bojovic D, Rennenberg H. Environ Pollut; 2016 Sep 30; 216():773-785. PubMed ID: 27396669 [Abstract] [Full Text] [Related]
9. Alleviating lead-induced phytotoxicity and enhancing the phytoremediation of castor bean (Ricinus communis L.) by glutathione application: new insights into the mechanisms regulating antioxidants, gas exchange and lead uptake. Bamagoos AA, Mallhi ZI, El-Esawi MA, Rizwan M, Ahmad A, Hussain A, Alharby HF, Alharbi BM, Ali S. Int J Phytoremediation; 2022 Sep 30; 24(9):933-944. PubMed ID: 34634959 [Abstract] [Full Text] [Related]
10. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Selamat SN, Abdullah SR, Idris M. Int J Phytoremediation; 2014 Sep 30; 16(7-12):694-703. PubMed ID: 24933879 [Abstract] [Full Text] [Related]
11. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J, Cao X, Zhou Q, Ma LQ. Sci Total Environ; 2006 Sep 15; 368(2-3):456-64. PubMed ID: 16600337 [Abstract] [Full Text] [Related]
12. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. de Souza Costa ET, Guilherme LR, de Melo EE, Ribeiro BT, Dos Santos B Inácio E, da Costa Severiano E, Faquin V, Hale BA. Biol Trace Elem Res; 2012 Jan 15; 145(1):93-100. PubMed ID: 21826609 [Abstract] [Full Text] [Related]
13. Anatomical changes, osmolytes accumulation and distribution in the native plants growing on Pb-contaminated sites. Adejumo SA, Oniosun B, Akpoilih OA, Adeseko A, Arowo DO. Environ Geochem Health; 2021 Apr 15; 43(4):1537-1549. PubMed ID: 32601905 [Abstract] [Full Text] [Related]
14. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J, Gonzales MJ, Ponce O, Ramírez L, León V, Torres A, Corpus M, Loayza-Muro R. Environ Sci Pollut Res Int; 2018 Dec 15; 25(34):33957-33966. PubMed ID: 30280335 [Abstract] [Full Text] [Related]
15. Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes. Manousaki E, Galanaki K, Papadimitriou L, Kalogerakis N. Int J Phytoremediation; 2014 Dec 15; 16(7-12):755-69. PubMed ID: 24933883 [Abstract] [Full Text] [Related]
16. Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead-spiked soils. Kiran BR, Prasad MNV. Ecotoxicol Environ Saf; 2019 Nov 15; 183():109574. PubMed ID: 31442801 [Abstract] [Full Text] [Related]
17. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. Saghi A, Rashed Mohassel MH, Parsa M, Hammami H. Int J Phytoremediation; 2016 Nov 15; 18(4):387-92. PubMed ID: 26552966 [Abstract] [Full Text] [Related]
18. Significance of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on phytoextraction of Pband Zn by Zea mays L. Praburaman L, Park SH, Cho M, Lee KJ, Ko JA, Han SS, Lee SH, Kamala-Kannan S, Oh BT. Environ Sci Pollut Res Int; 2017 Jan 15; 24(3):3172-3180. PubMed ID: 27864737 [Abstract] [Full Text] [Related]
19. [Application potential of Salicornia europaea in remediation of Cd, Pb and Li contaminated saline soil]. Lou T, Lü S, Li Y. Sheng Wu Gong Cheng Xue Bao; 2020 Mar 25; 36(3):481-492. PubMed ID: 32237542 [Abstract] [Full Text] [Related]
20. Remediation of lead and cadmium-contaminated soils. Salama AK, Osman KA, Gouda NA. Int J Phytoremediation; 2016 Mar 25; 18(4):364-7. PubMed ID: 26515924 [Abstract] [Full Text] [Related] Page: [Next] [New Search]