These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
200 related items for PubMed ID: 30596582
21. Centralities in simplicial complexes. Applications to protein interaction networks. Estrada E, Ross GJ. J Theor Biol; 2018 Feb 07; 438():46-60. PubMed ID: 29128505 [Abstract] [Full Text] [Related]
22. Prediction of Essential Proteins Based on Local Interaction Density. Qi Y, Luo J. IEEE/ACM Trans Comput Biol Bioinform; 2016 Feb 07; 13(6):1170-1182. PubMed ID: 26701891 [Abstract] [Full Text] [Related]
23. A new method for predicting essential proteins based on participation degree in protein complex and subgraph density. Lei X, Yang X. PLoS One; 2018 Feb 07; 13(6):e0198998. PubMed ID: 29894517 [Abstract] [Full Text] [Related]
24. Functional centrality: detecting lethality of proteins in protein interaction networks. Tew KL, Li XL, Tan SH. Genome Inform; 2007 Feb 07; 19():166-77. PubMed ID: 18546514 [Abstract] [Full Text] [Related]
29. Construction of Refined Protein Interaction Network for Predicting Essential Proteins. Li M, Ni P, Chen X, Wang J, Wu FX, Pan Y. IEEE/ACM Trans Comput Biol Bioinform; 2019 Feb 07; 16(4):1386-1397. PubMed ID: 28186903 [Abstract] [Full Text] [Related]
30. Identifying essential proteins using modified-monkey algorithm (MMA). Payra AK, Ghosh A. Comput Biol Chem; 2020 Oct 07; 88():107324. PubMed ID: 32623358 [Abstract] [Full Text] [Related]
32. Virtual identification of essential proteins within the protein interaction network of yeast. Estrada E. Proteomics; 2006 Jan 07; 6(1):35-40. PubMed ID: 16281187 [Abstract] [Full Text] [Related]
33. A new computational strategy for identifying essential proteins based on network topological properties and biological information. Qin C, Sun Y, Dong Y. PLoS One; 2017 Jan 07; 12(7):e0182031. PubMed ID: 28753682 [Abstract] [Full Text] [Related]
34. An iteration model for identifying essential proteins by combining comprehensive PPI network with biological information. Li S, Zhang Z, Li X, Tan Y, Wang L, Chen Z. BMC Bioinformatics; 2021 Sep 08; 22(1):430. PubMed ID: 34496745 [Abstract] [Full Text] [Related]
35. A protein network refinement method based on module discovery and biological information. Pan L, Wang H, Yang B, Li W. BMC Bioinformatics; 2024 Apr 20; 25(1):157. PubMed ID: 38643108 [Abstract] [Full Text] [Related]
36. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks. Wang Y, Sun H, Du W, Blanzieri E, Viero G, Xu Y, Liang Y. PLoS One; 2014 Apr 20; 9(9):e108716. PubMed ID: 25268881 [Abstract] [Full Text] [Related]
37. Essentiality and centrality in protein interaction networks revisited. Khuri S, Wuchty S. BMC Bioinformatics; 2015 Apr 01; 16():109. PubMed ID: 25880655 [Abstract] [Full Text] [Related]
38. Predicting Essential Proteins by Integrating Network Topology, Subcellular Localization Information, Gene Expression Profile and GO Annotation Data. Zhang W, Xu J, Zou X. IEEE/ACM Trans Comput Biol Bioinform; 2020 Apr 01; 17(6):2053-2061. PubMed ID: 31095490 [Abstract] [Full Text] [Related]
39. A New Method for Identifying Essential Proteins by Measuring Co-Expression and Functional Similarity. Zhang W, Xu J, Li X, Zou X. IEEE Trans Nanobioscience; 2016 Dec 01; 15(8):939-945. PubMed ID: 27834650 [Abstract] [Full Text] [Related]
40. Identifying essential proteins from active PPI networks constructed with dynamic gene expression. Xiao Q, Wang J, Peng X, Wu FX, Pan Y. BMC Genomics; 2015 Dec 01; 16 Suppl 3(Suppl 3):S1. PubMed ID: 25707432 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]