These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
11. On the classes of aminoacyl-tRNA synthetases and the error minimization in the genetic code. Cavalcanti AR, Neto BD, Ferreira R. J Theor Biol; 2000 May 07; 204(1):15-20. PubMed ID: 10772845 [Abstract] [Full Text] [Related]
12. The genetic code is very close to a global optimum in a model of its origin taking into account both the partition energy of amino acids and their biosynthetic relationships. Caldararo F, Di Giulio M. Biosystems; 2022 Apr 07; 214():104613. PubMed ID: 35085754 [Abstract] [Full Text] [Related]
14. An alternative look at code evolution: using non-canonical codes to evaluate adaptive and historic models for the origin of the genetic code. Morgens DW, Cavalcanti AR. J Mol Evol; 2013 Feb 07; 76(1-2):71-80. PubMed ID: 23344715 [Abstract] [Full Text] [Related]
15. Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint. Massey SE. Life (Basel); 2015 Apr 24; 5(2):1301-32. PubMed ID: 25919033 [Abstract] [Full Text] [Related]
18. The impact of message mutation on the fitness of a genetic code. Sella G, Ardell DH. J Mol Evol; 2002 May 24; 54(5):638-51. PubMed ID: 11965436 [Abstract] [Full Text] [Related]
20. The impact of including tRNA content on the optimality of the genetic code. Goodarzi H, Najafabadi HS, Nejad HA, Torabi N. Bull Math Biol; 2005 Nov 24; 67(6):1355-68. PubMed ID: 16005951 [Abstract] [Full Text] [Related] Page: [Next] [New Search]