These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
184 related items for PubMed ID: 30605241
1. Synthesis, Biological Evaluation, and Molecular Docking of Combretastatin and Colchicine Derivatives and their hCE1-Activated Prodrugs as Antiviral Agents. Richter M, Boldescu V, Graf D, Streicher F, Dimoglo A, Bartenschlager R, Klein CD. ChemMedChem; 2019 Feb 19; 14(4):469-483. PubMed ID: 30605241 [Abstract] [Full Text] [Related]
2. Microwave-assisted synthesis and biological evaluation of 3,4-diaryl maleic anhydride/N-substituted maleimide derivatives as combretastatin A-4 analogues. Guan Q, Zuo D, Jiang N, Qi H, Zhai Y, Bai Z, Feng D, Yang L, Jiang M, Bao K, Li C, Wu Y, Zhang W. Bioorg Med Chem Lett; 2015 Feb 01; 25(3):631-4. PubMed ID: 25529737 [Abstract] [Full Text] [Related]
3. The Masked Polar Group Incorporation (MPGI) Strategy in Drug Design: Effects of Nitrogen Substitutions on Combretastatin and Isocombretastatin Tubulin Inhibitors. González M, Ellahioui Y, Álvarez R, Gallego-Yerga L, Caballero E, Vicente-Blázquez A, Ramudo L, Marín M, Sanz C, Medarde M, Pelaéz R. Molecules; 2019 Nov 26; 24(23):. PubMed ID: 31779228 [Abstract] [Full Text] [Related]
4. Thiazolidinone Constraint Combretastatin Analogs as Novel Antitubulin Agents: Design, Synthesis, Biological Evaluation and Docking Studies. Sharma S, Gupta MK, Saxena AK, Bedi PM. Anticancer Agents Med Chem; 2017 Nov 26; 17(2):230-240. PubMed ID: 27141882 [Abstract] [Full Text] [Related]
5. Design, synthesis and biological evaluation of (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives as a new class of tubulin polymerization inhibitors. Yin Y, Qiao F, Jiang LY, Wang SF, Sha S, Wu X, Lv PC, Zhu HL. Bioorg Med Chem; 2014 Aug 01; 22(15):4285-92. PubMed ID: 24916028 [Abstract] [Full Text] [Related]
6. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Mustafa M, Abdelhamid D, Abdelhafez EMN, Ibrahim MAA, Gamal-Eldeen AM, Aly OM. Eur J Med Chem; 2017 Dec 01; 141():293-305. PubMed ID: 29031074 [Abstract] [Full Text] [Related]
7. Design, synthesis and biological evaluation of a novel tubulin inhibitor 7a3 targeting the colchicine binding site. Lai Q, Wang Y, Wang R, Lai W, Tang L, Tao Y, Liu Y, Zhang R, Huang L, Xiang H, Zeng S, Gou L, Chen H, Yao Y, Yang J. Eur J Med Chem; 2018 Aug 05; 156():162-179. PubMed ID: 30006162 [Abstract] [Full Text] [Related]
8. Combretastatin-like chalcones as inhibitors of microtubule polymerisation. Part 2: Structure-based discovery of alpha-aryl chalcones. Ducki S, Mackenzie G, Greedy B, Armitage S, Chabert JF, Bennett E, Nettles J, Snyder JP, Lawrence NJ. Bioorg Med Chem; 2009 Nov 15; 17(22):7711-22. PubMed ID: 19837594 [Abstract] [Full Text] [Related]
9. Synthesis, antiproliferative activity and molecular docking of thiocolchicine urethanes. Majcher U, Urbaniak A, Maj E, Moshari M, Delgado M, Wietrzyk J, Bartl F, Chambers TC, Tuszynski JA, Huczyński A. Bioorg Chem; 2018 Dec 15; 81():553-566. PubMed ID: 30248507 [Abstract] [Full Text] [Related]
10. Design, synthesis, and biological evaluation of water-soluble amino acid prodrug conjugates derived from combretastatin, dihydronaphthalene, and benzosuberene-based parent vascular disrupting agents. Devkota L, Lin CM, Strecker TE, Wang Y, Tidmore JK, Chen Z, Guddneppanavar R, Jelinek CJ, Lopez R, Liu L, Hamel E, Mason RP, Chaplin DJ, Trawick ML, Pinney KG. Bioorg Med Chem; 2016 Mar 01; 24(5):938-956. PubMed ID: 26852340 [Abstract] [Full Text] [Related]
11. Combretastatin linked 1,3,4-oxadiazole conjugates as a Potent Tubulin Polymerization inhibitors. Kamal A, Srikanth PS, Vishnuvardhan MV, Kumar GB, Suresh Babu K, Hussaini SM, Kapure JS, Alarifi A. Bioorg Chem; 2016 Apr 01; 65():126-36. PubMed ID: 26943479 [Abstract] [Full Text] [Related]
12. Design, synthesis and biological evaluation of novel vicinal diaryl-substituted 1H-Pyrazole analogues of combretastatin A-4 as highly potent tubulin polymerization inhibitors. Romagnoli R, Oliva P, Salvador MK, Camacho ME, Padroni C, Brancale A, Ferla S, Hamel E, Ronca R, Grillo E, Bortolozzi R, Rruga F, Mariotto E, Viola G. Eur J Med Chem; 2019 Nov 01; 181():111577. PubMed ID: 31400707 [Abstract] [Full Text] [Related]
13. Synthesis and biological evaluation of cis-restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers. Subba Rao AV, Swapna K, Shaik SP, Lakshma Nayak V, Srinivasa Reddy T, Sunkari S, Shaik TB, Bagul C, Kamal A. Bioorg Med Chem; 2017 Feb 01; 25(3):977-999. PubMed ID: 28034647 [Abstract] [Full Text] [Related]
14. Design, synthesis and molecular modeling of new 4-phenylcoumarin derivatives as tubulin polymerization inhibitors targeting MCF-7 breast cancer cells. Batran RZ, Kassem AF, Abbas EMH, Elseginy SA, Mounier MM. Bioorg Med Chem; 2018 Jul 23; 26(12):3474-3490. PubMed ID: 29793751 [Abstract] [Full Text] [Related]
15. Naphthalene combretastatin analogues: synthesis, cytotoxicity and antitubulin activity. Medarde M, Maya AB, Pérez-Melero C. J Enzyme Inhib Med Chem; 2004 Dec 23; 19(6):521-40. PubMed ID: 15662956 [Abstract] [Full Text] [Related]
16. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Li W, Sun H, Xu S, Zhu Z, Xu J. Future Med Chem; 2017 Oct 23; 9(15):1765-1794. PubMed ID: 28929799 [Abstract] [Full Text] [Related]
17. Design, synthesis and biological evaluation of millepachine derivatives as a new class of tubulin polymerization inhibitors. Wang G, Peng F, Cao D, Yang Z, Han X, Liu J, Wu W, He L, Ma L, Chen J, Sang Y, Xiang M, Peng A, Wei Y, Chen L. Bioorg Med Chem; 2013 Nov 01; 21(21):6844-54. PubMed ID: 23993668 [Abstract] [Full Text] [Related]
18. Synthesis, molecular docking and biological evaluation of 1-phenylsulphonyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as novel potential tubulin assembling inhibitors. Wang YT, Cai XC, Shi TQ, Zhang YL, Wang ZC, Liu CH, Zhu HL. Chem Biol Drug Des; 2017 Jul 01; 90(1):112-118. PubMed ID: 28032450 [Abstract] [Full Text] [Related]
19. New indole-based chalconoids as tubulin-targeting antiproliferative agents. Mirzaei H, Shokrzadeh M, Modanloo M, Ziar A, Riazi GH, Emami S. Bioorg Chem; 2017 Dec 01; 75():86-98. PubMed ID: 28922629 [Abstract] [Full Text] [Related]
20. Synthesis and biological evaluation of imidazo[2,1-b][1,3,4]thiadiazole-linked oxindoles as potent tubulin polymerization inhibitors. Kamal A, Rao MP, Das P, Swapna P, Polepalli S, Nimbarte VD, Mullagiri K, Kovvuri J, Jain N. ChemMedChem; 2014 Jul 01; 9(7):1463-75. PubMed ID: 24715721 [Abstract] [Full Text] [Related] Page: [Next] [New Search]