These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
295 related items for PubMed ID: 30606046
1. Role of Neuronal VEGF Signaling in the Prefrontal Cortex in the Rapid Antidepressant Effects of Ketamine. Deyama S, Bang E, Wohleb ES, Li XY, Kato T, Gerhard DM, Dutheil S, Dwyer JM, Taylor SR, Picciotto MR, Duman RS. Am J Psychiatry; 2019 May 01; 176(5):388-400. PubMed ID: 30606046 [Abstract] [Full Text] [Related]
2. Neurotrophic and Antidepressant Actions of Brain-Derived Neurotrophic Factor Require Vascular Endothelial Growth Factor. Deyama S, Bang E, Kato T, Li XY, Duman RS. Biol Psychiatry; 2019 Jul 15; 86(2):143-152. PubMed ID: 30712809 [Abstract] [Full Text] [Related]
3. IGF-1 release in the medial prefrontal cortex mediates the rapid and sustained antidepressant-like actions of ketamine. Deyama S, Kondo M, Shimada S, Kaneda K. Transl Psychiatry; 2022 May 17; 12(1):178. PubMed ID: 35577782 [Abstract] [Full Text] [Related]
4. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Fukumoto K, Fogaça MV, Liu RJ, Duman C, Kato T, Li XY, Duman RS. Proc Natl Acad Sci U S A; 2019 Jan 02; 116(1):297-302. PubMed ID: 30559184 [Abstract] [Full Text] [Related]
5. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Deyama S, Duman RS. Pharmacol Biochem Behav; 2020 Jan 02; 188():172837. PubMed ID: 31830487 [Abstract] [Full Text] [Related]
6. Neuron-specific deletion of VEGF or its receptor Flk-1 occludes the antidepressant-like effects of desipramine and fluoxetine in mice. Deyama S, Li XY, Duman RS. Neuropsychopharmacol Rep; 2024 Mar 02; 44(1):246-249. PubMed ID: 37960997 [Abstract] [Full Text] [Related]
7. Cortical and raphe GABAA, AMPA receptors and glial GLT-1 glutamate transporter contribute to the sustained antidepressant activity of ketamine. Pham TH, Defaix C, Nguyen TML, Mendez-David I, Tritschler L, David DJ, Gardier AM. Pharmacol Biochem Behav; 2020 May 02; 192():172913. PubMed ID: 32201299 [Abstract] [Full Text] [Related]
8. Intranasal Administration of Resolvin E1 Produces Antidepressant-Like Effects via BDNF/VEGF-mTORC1 Signaling in the Medial Prefrontal Cortex. Deyama S, Aoki S, Sugie R, Fukuda H, Shuto S, Minami M, Kaneda K. Neurotherapeutics; 2023 Mar 02; 20(2):484-501. PubMed ID: 36622634 [Abstract] [Full Text] [Related]
9. GABA interneurons are the cellular trigger for ketamine's rapid antidepressant actions. Gerhard DM, Pothula S, Liu RJ, Wu M, Li XY, Girgenti MJ, Taylor SR, Duman CH, Delpire E, Picciotto M, Wohleb ES, Duman RS. J Clin Invest; 2020 Mar 02; 130(3):1336-1349. PubMed ID: 31743111 [Abstract] [Full Text] [Related]
10. Temporally dissociable effects of ketamine on neuronal discharge and gamma oscillations in rat thalamo-cortical networks. Amat-Foraster M, Jensen AA, Plath N, Herrik KF, Celada P, Artigas F. Neuropharmacology; 2018 Jul 15; 137():13-23. PubMed ID: 29702122 [Abstract] [Full Text] [Related]
11. The duration of the antidepressant-like effects of a single infusion of brain-derived neurotrophic factor into the medial prefrontal cortex in mice. Deyama S, Kaneda K. Behav Brain Res; 2020 Sep 15; 394():112844. PubMed ID: 32745661 [Abstract] [Full Text] [Related]
12. 5-HT1A receptor stimulation in the medial prefrontal cortex mediates the antidepressant effects of mGlu2/3 receptor antagonist in mice. Fukumoto K, Iijima M, Funakoshi T, Chaki S. Neuropharmacology; 2018 Jul 15; 137():96-103. PubMed ID: 29738849 [Abstract] [Full Text] [Related]
13. The role of the excitation:inhibition functional balance in the mPFC in the onset of antidepressants. Yin YY, Wang YH, Liu WG, Yao JQ, Yuan J, Li ZH, Ran YH, Zhang LM, Li YF. Neuropharmacology; 2021 Jun 15; 191():108573. PubMed ID: 33945826 [Abstract] [Full Text] [Related]
14. BDNF release and signaling are required for the antidepressant actions of GLYX-13. Kato T, Fogaça MV, Deyama S, Li XY, Fukumoto K, Duman RS. Mol Psychiatry; 2018 Oct 15; 23(10):2007-2017. PubMed ID: 29203848 [Abstract] [Full Text] [Related]
15. Role of 5-HT1A Receptor Stimulation in the Medial Prefrontal Cortex in the Sustained Antidepressant Effects of Ketamine. Fukumoto K, Iijima M, Funakoshi T, Chaki S. Int J Neuropsychopharmacol; 2018 Apr 01; 21(4):371-381. PubMed ID: 29309585 [Abstract] [Full Text] [Related]
17. Antidepressant-like cognitive and behavioral effects of acute ketamine administration associated with plasticity in the ventral hippocampus to medial prefrontal cortex pathway. Jett JD, Boley AM, Girotti M, Shah A, Lodge DJ, Morilak DA. Psychopharmacology (Berl); 2015 Sep 01; 232(17):3123-33. PubMed ID: 25986748 [Abstract] [Full Text] [Related]
18. Essential roles of neuropeptide VGF regulated TrkB/mTOR/BICC1 signaling and phosphorylation of AMPA receptor subunit GluA1 in the rapid antidepressant-like actions of ketamine in mice. Shen M, Lv D, Liu X, Li S, Chen Y, Zhang Y, Wang Z, Wang C. Brain Res Bull; 2018 Oct 01; 143():58-65. PubMed ID: 30316917 [Abstract] [Full Text] [Related]
19. Neuron-specific deletion of VEGF or its receptor Flk-1 impairs recognition memory. Deyama S, Li XY, Duman RS. Eur Neuropsychopharmacol; 2020 Feb 01; 31():145-151. PubMed ID: 31902568 [Abstract] [Full Text] [Related]
20. Modulation of thalamo-cortical activity by the NMDA receptor antagonists ketamine and phencyclidine in the awake freely-moving rat. Amat-Foraster M, Celada P, Richter U, Jensen AA, Plath N, Artigas F, Herrik KF. Neuropharmacology; 2019 Nov 01; 158():107745. PubMed ID: 31445017 [Abstract] [Full Text] [Related] Page: [Next] [New Search]