These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


361 related items for PubMed ID: 30612691

  • 1. Life-stage related responses to combined effects of acclimation temperature and humidity on the thermal tolerance of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae).
    Mutamiswa R, Machekano H, Chidawanyika F, Nyamukondiwa C.
    J Therm Biol; 2019 Jan; 79():85-94. PubMed ID: 30612691
    [Abstract] [Full Text] [Related]

  • 2. Comparative assessment of the thermal tolerance of spotted stemborer, Chilo partellus (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae (Hymenoptera: Braconidae).
    Mutamiswa R, Chidawanyika F, Nyamukondiwa C.
    Insect Sci; 2018 Oct; 25(5):847-860. PubMed ID: 28374539
    [Abstract] [Full Text] [Related]

  • 3. Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae).
    Tarusikirwa VL, Mutamiswa R, English S, Chidawanyika F, Nyamukondiwa C.
    J Therm Biol; 2020 May; 90():102598. PubMed ID: 32479393
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Climate variability differentially impacts thermal fitness traits in three coprophagic beetle species.
    Nyamukondiwa C, Chidawanyika F, Machekano H, Mutamiswa R, Sands B, Mgidiswa N, Wall R.
    PLoS One; 2018 May; 13(6):e0198610. PubMed ID: 29874290
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Effect of temperature on the phenology of Chilo partellus (Swinhoe) (Lepidoptera, Crambidae); simulation and visualization of the potential future distribution of C. partellus in Africa under warmer temperatures through the development of life-table parameters.
    Khadioli N, Tonnang ZE, Muchugu E, Ong'amo G, Achia T, Kipchirchir I, Kroschel J, Le Ru B.
    Bull Entomol Res; 2014 Dec; 104(6):809-22. PubMed ID: 25229840
    [Abstract] [Full Text] [Related]

  • 10. Effects of developmental acclimation on fitness costs differ between two aphid species.
    Cao JY, Xing K, Liu HP, Zhao F.
    J Therm Biol; 2018 Dec; 78():58-64. PubMed ID: 30509668
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Rejection of the beneficial acclimation hypothesis (BAH) for short term heat acclimation in Drosophila nepalensis.
    Ramniwas S, Kumar G, Singh D.
    Genetica; 2020 Aug; 148(3-4):173-182. PubMed ID: 32789784
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.