These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Integrated process for the coproduction of fermentable sugars and lignin adsorbents from hardwood. Chu Q, Song K, Hu J, Bu Q, Zhang X, Chen X. Bioresour Technol; 2019 Oct; 289():121659. PubMed ID: 31234075 [Abstract] [Full Text] [Related]
3. Organosolv pretreatment assisted by carbocation scavenger to mitigate surface barrier effect of lignin for improving biomass saccharification and utilization. Chu Q, Tong W, Chen J, Wu S, Jin Y, Hu J, Song K. Biotechnol Biofuels; 2021 Jun 12; 14(1):136. PubMed ID: 34118969 [Abstract] [Full Text] [Related]
4. Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries. Jiang Y, Zeng X, Luque R, Tang X, Sun Y, Lei T, Liu S, Lin L. ChemSusChem; 2017 Oct 23; 10(20):3982-3993. PubMed ID: 28691765 [Abstract] [Full Text] [Related]
5. Comparison of liquid hot water, very dilute acid and alkali treatments for enhancing enzymatic digestibility of hazelnut tree pruning residues. Sabanci K, Buyukkileci AO. Bioresour Technol; 2018 Aug 23; 261():158-165. PubMed ID: 29660656 [Abstract] [Full Text] [Related]
6. Biomass pretreatments capable of enabling lignin valorization in a biorefinery process. Narron RH, Kim H, Chang HM, Jameel H, Park S. Curr Opin Biotechnol; 2016 Apr 23; 38():39-46. PubMed ID: 26780496 [Abstract] [Full Text] [Related]
7. Quantitative comparison of the delignification performance of lignocellulosic biomass pretreatment technologies for enzymatic saccharification. Xiao K, Li H, Liu L, Liu X, Lian Y. Environ Sci Pollut Res Int; 2023 Feb 23; 30(9):22929-22940. PubMed ID: 36307567 [Abstract] [Full Text] [Related]
8. Optimization of alkali pretreatment and enzymatic saccharification of jute (Corchorus olitorius L.) biomass using response surface methodology. Sharma L, Alam NM, Roy S, Satya P, Kar G, Ghosh S, Goswami T, Majumdar B. Bioresour Technol; 2023 Jan 23; 368():128318. PubMed ID: 36375701 [Abstract] [Full Text] [Related]
9. Progress in the development of alkali and metal salt catalysed lignocellulosic pretreatment regimes: Potential for bioethanol production. Moodley P, Sewsynker-Sukai Y, Gueguim Kana EB. Bioresour Technol; 2020 Aug 23; 310():123372. PubMed ID: 32312596 [Abstract] [Full Text] [Related]
10. Lignin-first biomass fractionation using a hybrid organosolv - Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Matsakas L, Raghavendran V, Yakimenko O, Persson G, Olsson E, Rova U, Olsson L, Christakopoulos P. Bioresour Technol; 2019 Feb 23; 273():521-528. PubMed ID: 30471644 [Abstract] [Full Text] [Related]
11. Enhancing Bioethanol Productivity Using Alkali-Pretreated Empty Palm Fruit Bunch Fiber Hydrolysate. Kim S. Biomed Res Int; 2018 Feb 23; 2018():5272935. PubMed ID: 30255095 [Abstract] [Full Text] [Related]
12. Analysis of Single-Step Pretreatments for Lignocellulosic Platform Isolation as the Basis of Biorefinery Design. Poveda-Giraldo JA, Garcia-Vallejo MC, Cardona Alzate CA. Molecules; 2023 Jan 28; 28(3):. PubMed ID: 36770944 [Abstract] [Full Text] [Related]
13. Comparison of pretreatment methods for rye straw in the second generation biorefinery: effect on cellulose, hemicellulose and lignin recovery. Perez-Cantu L, Schreiber A, Schütt F, Saake B, Kirsch C, Smirnova I. Bioresour Technol; 2013 Aug 28; 142():428-35. PubMed ID: 23748091 [Abstract] [Full Text] [Related]
14. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes. Teeravivattanakit T, Baramee S, Phitsuwan P, Sornyotha S, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Sakka K, Ratanakhanokchai K. Appl Environ Microbiol; 2017 Nov 15; 83(22):. PubMed ID: 28864653 [Abstract] [Full Text] [Related]
15. OxiOrganosolv: A novel acid free oxidative organosolv fractionation for lignocellulose fine sugar streams. Kalogiannis KG, Karnaouri A, Michailof C, Tzika AM, Asimakopoulou G, Topakas E, Lappas AA. Bioresour Technol; 2020 Oct 15; 313():123599. PubMed ID: 32540692 [Abstract] [Full Text] [Related]
16. One-step lignocellulose fractionation using acid/pentanol pretreatment for enhanced fermentable sugar and reactive lignin production with efficient pentanol retrievability. Madadi M, Zahoor, Song G, Karimi K, Zhu D, Elsayed M, Sun F, Abomohra A. Bioresour Technol; 2022 Sep 15; 359():127503. PubMed ID: 35728765 [Abstract] [Full Text] [Related]
17. Comparative study of acid- and alkali-catalyzed 1,4-butanediol pretreatment for co-production of fermentable sugars and value-added lignin compounds. Xie X, Chen M, Tong W, Song K, Wang J, Wu S, Hu J, Jin Y, Chu Q. Biotechnol Biofuels Bioprod; 2023 Mar 28; 16(1):52. PubMed ID: 36978121 [Abstract] [Full Text] [Related]
19. Modelling of pretreatment and saccharification with different feedstocks and kinetic modeling of sorghum saccharification. Prathyusha N, Kamesh R, Rani KY, Sumana C, Sridhar S, Prakasham RS, Yashwanth VVN, Sheelu G, Kumar MP. Bioresour Technol; 2016 Dec 28; 221():550-559. PubMed ID: 27686723 [Abstract] [Full Text] [Related]
20. Pretreatment of Wheat Straw with Phosphoric Acid and Hydrogen Peroxide to Simultaneously Facilitate Cellulose Digestibility and Modify Lignin as Adsorbents. Wan X, Yao F, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S. Biomolecules; 2019 Dec 08; 9(12):. PubMed ID: 31817992 [Abstract] [Full Text] [Related] Page: [Next] [New Search]