These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


546 related items for PubMed ID: 30634433

  • 1. HIF-1-Dependent Reprogramming of Glucose Metabolic Pathway of Cancer Cells and Its Therapeutic Significance.
    Nagao A, Kobayashi M, Koyasu S, Chow CCT, Harada H.
    Int J Mol Sci; 2019 Jan 09; 20(2):. PubMed ID: 30634433
    [Abstract] [Full Text] [Related]

  • 2. Mitochondrial oxidative phosphorylation became functional under aglycemic hypoxia conditions in A549 cells.
    Öğünç Keçeci Y, İncesu Z.
    Mol Biol Rep; 2022 Sep 09; 49(9):8219-8228. PubMed ID: 35834035
    [Abstract] [Full Text] [Related]

  • 3. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P, Schmidberger H, Mayer A.
    Int J Radiat Biol; 2019 Jul 09; 95(7):912-919. PubMed ID: 30822194
    [Abstract] [Full Text] [Related]

  • 4. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells.
    Liu Z, Sun Y, Tan S, Liu L, Hu S, Huo H, Li M, Cui Q, Yu M.
    Tumour Biol; 2016 May 09; 37(5):6661-71. PubMed ID: 26646563
    [Abstract] [Full Text] [Related]

  • 5. Activation of the hypoxia-inducible factor pathway protects against acute ischemic stroke by reprogramming central carbon metabolism.
    Madai S, Kilic P, Schmidt RM, Bas-Orth C, Korff T, Büttner M, Klinke G, Poschet G, Marti HH, Kunze R.
    Theranostics; 2024 May 09; 14(7):2856-2880. PubMed ID: 38773968
    [Abstract] [Full Text] [Related]

  • 6. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J, Tan M, Cai Q.
    Cancer Lett; 2015 Jan 28; 356(2 Pt A):156-64. PubMed ID: 24732809
    [Abstract] [Full Text] [Related]

  • 7. Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways.
    Kumar S, Donti TR, Agnihotri N, Mehta K.
    Int J Cancer; 2014 Jun 15; 134(12):2798-807. PubMed ID: 24477458
    [Abstract] [Full Text] [Related]

  • 8. Lipid metabolic reprogramming by hypoxia-inducible factor-1 in the hypoxic tumour microenvironment.
    Seo J, Yun JE, Kim SJ, Chun YS.
    Pflugers Arch; 2022 Jun 15; 474(6):591-601. PubMed ID: 35348849
    [Abstract] [Full Text] [Related]

  • 9. HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs.
    Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H.
    Sci Rep; 2014 Jan 23; 4():3793. PubMed ID: 24452734
    [Abstract] [Full Text] [Related]

  • 10. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells.
    Luo W, Semenza GL.
    Oncotarget; 2011 Jul 23; 2(7):551-6. PubMed ID: 21709315
    [Abstract] [Full Text] [Related]

  • 11. UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization.
    Nakashima R, Goto Y, Koyasu S, Kobayashi M, Morinibu A, Yoshimura M, Hiraoka M, Hammond EM, Harada H.
    Sci Rep; 2017 Jul 31; 7(1):6879. PubMed ID: 28761052
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Acetylation mediated by the p300/CBP-associated factor determines cellular energy metabolic pathways in cancer.
    Rajendran R, Garva R, Ashour H, Leung T, Stratford I, Krstic-Demonacos M, Demonacos C.
    Int J Oncol; 2013 Jun 31; 42(6):1961-72. PubMed ID: 23591450
    [Abstract] [Full Text] [Related]

  • 15. Should the standard model of cellular energy metabolism be reconsidered? Possible coupling between the pentose phosphate pathway, glycolysis and extra-mitochondrial oxidative phosphorylation.
    Morelli AM, Scholkmann F.
    Biochimie; 2024 Jun 31; 221():99-109. PubMed ID: 38307246
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Regulation of cancer cell metabolism by hypoxia-inducible factor 1.
    Semenza GL.
    Semin Cancer Biol; 2009 Feb 31; 19(1):12-6. PubMed ID: 19114105
    [Abstract] [Full Text] [Related]

  • 18. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.
    Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, Lanciotti M, Serni S, Cirri P, Chiarugi P.
    Cancer Res; 2012 Oct 01; 72(19):5130-40. PubMed ID: 22850421
    [Abstract] [Full Text] [Related]

  • 19. Metabolic evolutionary roots of the macrophage immune response in amoeba-bacteria interactions: The conserved role of hypoxia-induced Factor and AMP kinase.
    Dzik J.
    Acta Biochim Pol; 2021 Aug 10; 68(3):457-476. PubMed ID: 34374500
    [Abstract] [Full Text] [Related]

  • 20. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines.
    Grosso S, Doyen J, Parks SK, Bertero T, Paye A, Cardinaud B, Gounon P, Lacas-Gervais S, Noël A, Pouysségur J, Barbry P, Mazure NM, Mari B.
    Cell Death Dis; 2013 Mar 14; 4(3):e544. PubMed ID: 23492775
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.