These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 30636284

  • 1. Continuous integrated antibody precipitation with two-stage tangential flow microfiltration enables constant mass flow.
    Burgstaller D, Jungbauer A, Satzer P.
    Biotechnol Bioeng; 2019 May; 116(5):1053-1065. PubMed ID: 30636284
    [Abstract] [Full Text] [Related]

  • 2. Continuous precipitation for monoclonal antibody capture using countercurrent washing by microfiltration.
    Li Z, Gu Q, Coffman JL, Przybycien T, Zydney AL.
    Biotechnol Prog; 2019 Nov; 35(6):e2886. PubMed ID: 31342667
    [Abstract] [Full Text] [Related]

  • 3. Integration of a perfusion reactor and continuous precipitation in an entirely membrane-based process for antibody capture.
    Recanati G, Pappenreiter M, Gstoettner C, Scheidl P, Vega ED, Sissolak B, Jungbauer A.
    Eng Life Sci; 2023 Oct; 23(10):e2300219. PubMed ID: 37795344
    [Abstract] [Full Text] [Related]

  • 4. Continuous precipitation-filtration process for initial capture of a monoclonal antibody product using a four-stage countercurrent hollow fiber membrane washing step.
    Minervini M, Mergy M, Zhu Y, Gutierrez Diaz MA, Pointer C, Shinkazh O, Oppenheim SF, Cramer SM, Przybycien TM, Zydney AL.
    Biotechnol Bioeng; 2024 Aug; 121(8):2258-2268. PubMed ID: 37565527
    [Abstract] [Full Text] [Related]

  • 5. Enhanced filtration performance using feed-and-bleed configuration for purification of antibody precipitates.
    Li Z, Chen TH, Andini E, Coffman JL, Przybycien T, Zydney AL.
    Biotechnol Prog; 2021 Jan; 37(1):e3082. PubMed ID: 32940015
    [Abstract] [Full Text] [Related]

  • 6. An integrated precipitation and ion-exchange chromatography process for antibody manufacturing: Process development strategy and continuous chromatography exploration.
    Großhans S, Wang G, Fischer C, Hubbuch J.
    J Chromatogr A; 2018 Jan 19; 1533():66-76. PubMed ID: 29229331
    [Abstract] [Full Text] [Related]

  • 7. Separation of immunoglobulin G precipitate from contaminating proteins using microfiltration.
    Neal G, Francis R, Shamlou PA, Keshavarz-Moore E.
    Biotechnol Appl Biochem; 2004 Apr 19; 39(Pt 2):241-8. PubMed ID: 15032745
    [Abstract] [Full Text] [Related]

  • 8. Continuous precipitation of IgG from CHO cell culture supernatant in a tubular reactor.
    Hammerschmidt N, Hintersteiner B, Lingg N, Jungbauer A.
    Biotechnol J; 2015 Aug 19; 10(8):1196-205. PubMed ID: 25781580
    [Abstract] [Full Text] [Related]

  • 9. Design and operation of a continuous integrated monoclonal antibody production process.
    Steinebach F, Ulmer N, Wolf M, Decker L, Schneider V, Wälchli R, Karst D, Souquet J, Morbidelli M.
    Biotechnol Prog; 2017 Sep 19; 33(5):1303-1313. PubMed ID: 28691347
    [Abstract] [Full Text] [Related]

  • 10. Integrated continuous downstream process of monoclonal antibody developed by converting the batch platform process based on the process characterization.
    Konoike F, Taniguchi M, Yamamoto S.
    Biotechnol Bioeng; 2024 Aug 19; 121(8):2269-2277. PubMed ID: 37691165
    [Abstract] [Full Text] [Related]

  • 11. Flow management strategies for a connected purification process.
    Goebel M, Rodrigues R, Pampel L, Rapp J, Shultz J, Cui H.
    Biotechnol Bioeng; 2021 Sep 19; 118(9):3460-3467. PubMed ID: 33788274
    [Abstract] [Full Text] [Related]

  • 12. Effect of zinc chloride and PEG concentrations on the critical flux during tangential flow microfiltration of BSA precipitates.
    Li Z, Zydney AL.
    Biotechnol Prog; 2017 Nov 19; 33(6):1561-1567. PubMed ID: 28840656
    [Abstract] [Full Text] [Related]

  • 13. Continuous capture of recombinant antibodies by ZnCl 2 precipitation without polyethylene glycol.
    Dutra G, Komuczki D, Jungbauer A, Satzer P.
    Eng Life Sci; 2020 Jul 19; 20(7):265-274. PubMed ID: 32647505
    [Abstract] [Full Text] [Related]

  • 14. Pilot-scale demonstration of an end-to-end integrated and continuous biomanufacturing process.
    Coolbaugh MJ, Varner CT, Vetter TA, Davenport EK, Bouchard B, Fiadeiro M, Tugcu N, Walther J, Patil R, Brower K.
    Biotechnol Bioeng; 2021 Sep 19; 118(9):3287-3301. PubMed ID: 33410159
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Control of surge tanks for continuous manufacturing of monoclonal antibodies.
    Thakur G, Nikita S, Tiwari A, Rathore AS.
    Biotechnol Bioeng; 2021 May 19; 118(5):1913-1931. PubMed ID: 33547800
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. High productivity purification of immunoglobulin G monoclonal antibodies on starch-coated magnetic nanoparticles by steric exclusion of polyethylene glycol.
    Gagnon P, Toh P, Lee J.
    J Chromatogr A; 2014 Jan 10; 1324():171-80. PubMed ID: 24315125
    [Abstract] [Full Text] [Related]

  • 19. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies.
    McNerney T, Thomas A, Senczuk A, Petty K, Zhao X, Piper R, Carvalho J, Hammond M, Sawant S, Bussiere J.
    MAbs; 2015 Jan 10; 7(2):413-28. PubMed ID: 25706650
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.