These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
218 related items for PubMed ID: 30640456
1. Assessing the Predictive Power of Relative Binding Free Energy Calculations for Test Cases Involving Displacement of Binding Site Water Molecules. Wahl J, Smieško M. J Chem Inf Model; 2019 Feb 25; 59(2):754-765. PubMed ID: 30640456 [Abstract] [Full Text] [Related]
2. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. Deng Y, Roux B. J Chem Phys; 2008 Mar 21; 128(11):115103. PubMed ID: 18361618 [Abstract] [Full Text] [Related]
3. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo. Ross GA, Russell E, Deng Y, Lu C, Harder ED, Abel R, Wang L. J Chem Theory Comput; 2020 Oct 13; 16(10):6061-6076. PubMed ID: 32955877 [Abstract] [Full Text] [Related]
4. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. Cournia Z, Allen B, Sherman W. J Chem Inf Model; 2017 Dec 26; 57(12):2911-2937. PubMed ID: 29243483 [Abstract] [Full Text] [Related]
5. Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome. Ge X, Roux B. J Phys Chem B; 2010 Jul 29; 114(29):9525-39. PubMed ID: 20608691 [Abstract] [Full Text] [Related]
6. Accounting for the Central Role of Interfacial Water in Protein-Ligand Binding Free Energy Calculations. Ben-Shalom IY, Lin Z, Radak BK, Lin C, Sherman W, Gilson MK. J Chem Theory Comput; 2020 Dec 08; 16(12):7883-7894. PubMed ID: 33206520 [Abstract] [Full Text] [Related]
7. Accelerating Convergence of Free Energy Computations with Hamiltonian Simulated Annealing of Solvent (HSAS). Jiang W. J Chem Theory Comput; 2019 Apr 09; 15(4):2179-2186. PubMed ID: 30821969 [Abstract] [Full Text] [Related]
8. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations. Misini Ignjatović M, Caldararu O, Dong G, Muñoz-Gutierrez C, Adasme-Carreño F, Ryde U. J Comput Aided Mol Des; 2016 Sep 09; 30(9):707-730. PubMed ID: 27565797 [Abstract] [Full Text] [Related]
9. Protein-Ligand Binding Free Energy Calculations with FEP. Wang L, Chambers J, Abel R. Methods Mol Biol; 2019 Sep 09; 2022():201-232. PubMed ID: 31396905 [Abstract] [Full Text] [Related]
10. Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields. Deng J, Cui Q. J Chem Theory Comput; 2024 Mar 12; 20(5):1897-1911. PubMed ID: 38417108 [Abstract] [Full Text] [Related]
11. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials. Ge X, Roux B. J Mol Recognit; 2010 Mar 12; 23(2):128-41. PubMed ID: 20151411 [Abstract] [Full Text] [Related]
12. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo. Ge Y, Melling OJ, Dong W, Essex JW, Mobley DL. J Comput Aided Mol Des; 2022 Oct 12; 36(10):767-779. PubMed ID: 36198874 [Abstract] [Full Text] [Related]
13. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. Genheden S, Mikulskis P, Hu L, Kongsted J, Söderhjelm P, Ryde U. J Am Chem Soc; 2011 Aug 24; 133(33):13081-92. PubMed ID: 21728337 [Abstract] [Full Text] [Related]
14. Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques. Ge Y, Wych DC, Samways ML, Wall ME, Essex JW, Mobley DL. J Chem Theory Comput; 2022 Mar 08; 18(3):1359-1381. PubMed ID: 35148093 [Abstract] [Full Text] [Related]
15. Assessing the accuracy of inhomogeneous fluid solvation theory in predicting hydration free energies of simple solutes. Huggins DJ, Payne MC. J Phys Chem B; 2013 Jul 11; 117(27):8232-44. PubMed ID: 23763625 [Abstract] [Full Text] [Related]
16. Strategies to calculate water binding free energies in protein-ligand complexes. Bodnarchuk MS, Viner R, Michel J, Essex JW. J Chem Inf Model; 2014 Jun 23; 54(6):1623-33. PubMed ID: 24684745 [Abstract] [Full Text] [Related]
17. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding. Katkova EV, Onufriev AV, Aguilar B, Sulimov VB. J Mol Graph Model; 2017 Mar 23; 72():70-80. PubMed ID: 28064081 [Abstract] [Full Text] [Related]
18. Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo. Bergazin TD, Ben-Shalom IY, Lim NM, Gill SC, Gilson MK, Mobley DL. J Comput Aided Mol Des; 2021 Feb 23; 35(2):167-177. PubMed ID: 32968887 [Abstract] [Full Text] [Related]
19. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications using Molecular Dynamics Simulations. Wahl J, Smieško M. ChemMedChem; 2018 Jul 06; 13(13):1325-1335. PubMed ID: 29726604 [Abstract] [Full Text] [Related]
20. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions. Hori K, Yamaguchi T, Uezu K, Sumimoto M. J Comput Chem; 2011 Apr 15; 32(5):778-86. PubMed ID: 21341291 [Abstract] [Full Text] [Related] Page: [Next] [New Search]