These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


407 related items for PubMed ID: 30642159

  • 41. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system.
    Shu M, Wong L, Miller JH, Sissons CH.
    Arch Oral Biol; 2000 Jan; 45(1):27-40. PubMed ID: 10669090
    [Abstract] [Full Text] [Related]

  • 42. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome.
    Garcia SS, Blackledge MS, Michalek S, Su L, Ptacek T, Eipers P, Morrow C, Lefkowitz EJ, Melander C, Wu H.
    J Dent Res; 2017 Jul; 96(7):807-814. PubMed ID: 28571487
    [Abstract] [Full Text] [Related]

  • 43. Antibiofilm efficacy of photosensitizer-functionalized bioactive nanoparticles on multispecies biofilm.
    Shrestha A, Kishen A.
    J Endod; 2014 Oct; 40(10):1604-10. PubMed ID: 25260731
    [Abstract] [Full Text] [Related]

  • 44. Enhanced design and formulation of nanoparticles for anti-biofilm drug delivery.
    Sims KR, Liu Y, Hwang G, Jung HI, Koo H, Benoit DSW.
    Nanoscale; 2018 Dec 20; 11(1):219-236. PubMed ID: 30525159
    [Abstract] [Full Text] [Related]

  • 45. Biofilm layers affect the treatment outcomes of NaF and Nano-hydroxyapatite.
    Zhang M, He LB, Exterkate RA, Cheng L, Li JY, Ten Cate JM, Crielaard W, Deng DM.
    J Dent Res; 2015 Apr 20; 94(4):602-7. PubMed ID: 25576469
    [Abstract] [Full Text] [Related]

  • 46. Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI.
    Chao Y, Karmali PP, Mukthavaram R, Kesari S, Kouznetsova VL, Tsigelny IF, Simberg D.
    ACS Nano; 2013 May 28; 7(5):4289-98. PubMed ID: 23614696
    [Abstract] [Full Text] [Related]

  • 47. Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy.
    Vallabani NVS, Vinu A, Singh S, Karakoti A.
    J Colloid Interface Sci; 2020 May 01; 567():154-164. PubMed ID: 32045737
    [Abstract] [Full Text] [Related]

  • 48. Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization.
    Thurnheer T, Belibasakis GN.
    Arch Oral Biol; 2018 May 01; 89():77-83. PubMed ID: 29482049
    [Abstract] [Full Text] [Related]

  • 49. Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model.
    Eshed M, Lellouche J, Matalon S, Gedanken A, Banin E.
    Langmuir; 2012 Aug 21; 28(33):12288-95. PubMed ID: 22830392
    [Abstract] [Full Text] [Related]

  • 50. Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix.
    Fulaz S, Vitale S, Quinn L, Casey E.
    Trends Microbiol; 2019 Nov 21; 27(11):915-926. PubMed ID: 31420126
    [Abstract] [Full Text] [Related]

  • 51. Antibacterial and Biocompatible Titanium-Copper Oxide Coating May Be a Potential Strategy to Reduce Periprosthetic Infection: An In Vitro Study.
    Norambuena GA, Patel R, Karau M, Wyles CC, Jannetto PJ, Bennet KE, Hanssen AD, Sierra RJ.
    Clin Orthop Relat Res; 2017 Mar 21; 475(3):722-732. PubMed ID: 26847453
    [Abstract] [Full Text] [Related]

  • 52. Direct Synthesis of Dextran-Based Antibacterial Hydrogels for Extended Release of Biocides and Eradication of Topical Biofilms.
    Hoque J, Haldar J.
    ACS Appl Mater Interfaces; 2017 May 17; 9(19):15975-15985. PubMed ID: 28422484
    [Abstract] [Full Text] [Related]

  • 53. Dextran stabilized iron oxide nanoparticles: synthesis, characterization and in vitro studies.
    Easo SL, Mohanan PV.
    Carbohydr Polym; 2013 Jan 30; 92(1):726-32. PubMed ID: 23218360
    [Abstract] [Full Text] [Related]

  • 54. Real-time solvent tolerance analysis of pseudomonas sp. strain VLB120{Delta}C catalytic biofilms.
    Halan B, Schmid A, Buehler K.
    Appl Environ Microbiol; 2011 Mar 30; 77(5):1563-71. PubMed ID: 21193676
    [Abstract] [Full Text] [Related]

  • 55. A new tool to attack biofilms: driving magnetic iron-oxide nanoparticles to disrupt the matrix.
    Li J, Nickel R, Wu J, Lin F, van Lierop J, Liu S.
    Nanoscale; 2019 Apr 04; 11(14):6905-6915. PubMed ID: 30912773
    [Abstract] [Full Text] [Related]

  • 56. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy.
    Tassa C, Shaw SY, Weissleder R.
    Acc Chem Res; 2011 Oct 18; 44(10):842-52. PubMed ID: 21661727
    [Abstract] [Full Text] [Related]

  • 57. Dextran-coated iron oxide nanoparticle for delivery of miR-29a to breast cancer cell line.
    Yalcin S.
    Pharm Dev Technol; 2019 Oct 18; 24(8):1032-1037. PubMed ID: 31159615
    [Abstract] [Full Text] [Related]

  • 58. Glycosyltransferase-Mediated Biofilm Matrix Dynamics and Virulence of Streptococcus mutans.
    Rainey K, Michalek SM, Wen ZT, Wu H.
    Appl Environ Microbiol; 2019 Mar 01; 85(5):. PubMed ID: 30578260
    [Abstract] [Full Text] [Related]

  • 59. Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties.
    Khalid HF, Tehseen B, Sarwar Y, Hussain SZ, Khan WS, Raza ZA, Bajwa SZ, Kanaras AG, Hussain I, Rehman A.
    J Hazard Mater; 2019 Feb 15; 364():441-448. PubMed ID: 30384254
    [Abstract] [Full Text] [Related]

  • 60. Chitosan Phytate Nanoparticles: A Synergistic Strategy for Effective Dental Caries Prevention.
    Jiang W, Peng J, Jiang N, Zhang W, Liu S, Li J, Duan D, Li Y, Peng C, Yan Y, Zhao Y, Han G.
    ACS Nano; 2024 May 28; 18(21):13528-13537. PubMed ID: 38747549
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.