These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


341 related items for PubMed ID: 30642247

  • 1. Exploiting locational and topological overlap model to identify modules in protein interaction networks.
    Cheng L, Liu P, Wang D, Leung KS.
    BMC Bioinformatics; 2019 Jan 14; 20(1):23. PubMed ID: 30642247
    [Abstract] [Full Text] [Related]

  • 2. Identification of Topological Network Modules in Perturbed Protein Interaction Networks.
    Sardiu ME, Gilmore JM, Groppe B, Florens L, Washburn MP.
    Sci Rep; 2017 Mar 08; 7():43845. PubMed ID: 28272416
    [Abstract] [Full Text] [Related]

  • 3. The relative vertex clustering value--a new criterion for the fast discovery of functional modules in protein interaction networks.
    Ibrahim ZM, Ngom A.
    BMC Bioinformatics; 2015 Mar 08; 16 Suppl 4(Suppl 4):S3. PubMed ID: 25734691
    [Abstract] [Full Text] [Related]

  • 4. A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification.
    Yu L, Gao L, Li K, Zhao Y, Chiu DK.
    Comput Biol Chem; 2011 Oct 12; 35(5):298-307. PubMed ID: 22000801
    [Abstract] [Full Text] [Related]

  • 5. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks.
    Wang J, Li M, Chen J, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2011 Oct 12; 8(3):607-20. PubMed ID: 20733244
    [Abstract] [Full Text] [Related]

  • 6. Combining functional and topological properties to identify core modules in protein interaction networks.
    Lubovac Z, Gamalielsson J, Olsson B.
    Proteins; 2006 Sep 01; 64(4):948-59. PubMed ID: 16794996
    [Abstract] [Full Text] [Related]

  • 7. A novel subgradient-based optimization algorithm for blockmodel functional module identification.
    Wang Y, Qian X.
    BMC Bioinformatics; 2013 Sep 01; 14 Suppl 2(Suppl 2):S23. PubMed ID: 23368964
    [Abstract] [Full Text] [Related]

  • 8. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N, Yoon BJ.
    BMC Bioinformatics; 2016 Oct 06; 17(Suppl 13):351. PubMed ID: 27766944
    [Abstract] [Full Text] [Related]

  • 9. How and when should interactome-derived clusters be used to predict functional modules and protein function?
    Song J, Singh M.
    Bioinformatics; 2009 Dec 01; 25(23):3143-50. PubMed ID: 19770263
    [Abstract] [Full Text] [Related]

  • 10. A New Method for Predicting Protein Functions From Dynamic Weighted Interactome Networks.
    Zhao B, Wang J, Li M, Li X, Li Y, Wu FX, Pan Y.
    IEEE Trans Nanobioscience; 2016 Mar 01; 15(2):131-9. PubMed ID: 26955047
    [Abstract] [Full Text] [Related]

  • 11. Identification of functional modules in a PPI network by clique percolation clustering.
    Zhang S, Ning X, Zhang XS.
    Comput Biol Chem; 2006 Dec 01; 30(6):445-51. PubMed ID: 17098476
    [Abstract] [Full Text] [Related]

  • 12. Detecting functional modules in the yeast protein-protein interaction network.
    Chen J, Yuan B.
    Bioinformatics; 2006 Sep 15; 22(18):2283-90. PubMed ID: 16837529
    [Abstract] [Full Text] [Related]

  • 13. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B, Guan J.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Sep 15; 11(4):616-27. PubMed ID: 26356332
    [Abstract] [Full Text] [Related]

  • 14. A protein network refinement method based on module discovery and biological information.
    Pan L, Wang H, Yang B, Li W.
    BMC Bioinformatics; 2024 Apr 20; 25(1):157. PubMed ID: 38643108
    [Abstract] [Full Text] [Related]

  • 15. Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks.
    Chen B, Fan W, Liu J, Wu FX.
    Brief Bioinform; 2014 Mar 20; 15(2):177-94. PubMed ID: 23780996
    [Abstract] [Full Text] [Related]

  • 16. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M, Li W, Wu FX, Pan Y, Wang J.
    J Theor Biol; 2018 Jun 14; 447():65-73. PubMed ID: 29571709
    [Abstract] [Full Text] [Related]

  • 17. Construction of Refined Protein Interaction Network for Predicting Essential Proteins.
    Li M, Ni P, Chen X, Wang J, Wu FX, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2019 Jun 14; 16(4):1386-1397. PubMed ID: 28186903
    [Abstract] [Full Text] [Related]

  • 18. Detection of functional modules from protein interaction networks with an enhanced random walk based algorithm.
    Cai B, Wang H, Zheng H, Wang H.
    Int J Comput Biol Drug Des; 2011 Jun 14; 4(3):290-306. PubMed ID: 21778561
    [Abstract] [Full Text] [Related]

  • 19. Functional diversity of topological modules in human protein-protein interaction networks.
    Liu G, Wang H, Chu H, Yu J, Zhou X.
    Sci Rep; 2017 Nov 23; 7(1):16199. PubMed ID: 29170401
    [Abstract] [Full Text] [Related]

  • 20. A Seed Expansion Graph Clustering Method for Protein Complexes Detection in Protein Interaction Networks.
    Wang J, Zheng W, Qian Y, Liang J.
    Molecules; 2017 Dec 08; 22(12):. PubMed ID: 29292776
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.