These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog. Lüttgau HC, Spiecker W. J Physiol; 1979 Nov; 296():411-29. PubMed ID: 316821 [Abstract] [Full Text] [Related]
25. Effects of phalloidin on electrical and mechanical activity of frog muscle fibres. Cognard C, Nyambi GE, Potreau D, Raymond G. Eur J Pharmacol; 1985 Mar 26; 110(1):89-94. PubMed ID: 4007052 [Abstract] [Full Text] [Related]
27. [Fiber-type morphology and function of the triads in frog (Rana esculenta) skeletal muscle)]. Dauber W. Z Mikrosk Anat Forsch; 1979 Sep 26; 93(3):512-36. PubMed ID: 316237 [Abstract] [Full Text] [Related]
28. Evidence for a transient potassium membrane current dependent on calcium influx in crab muscle fibre. Mounier Y, Vassort G. J Physiol; 1975 Oct 26; 251(3):609-25. PubMed ID: 1195141 [Abstract] [Full Text] [Related]
29. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. Ford LE, Huxley AF, Simmons RM. J Physiol; 1977 Jul 26; 269(2):441-515. PubMed ID: 302333 [Abstract] [Full Text] [Related]
30. A non-linear voltage dependent charge movement in frog skeletal muscle. Chandler WK, Rakowski RF, Schneider MF. J Physiol; 1976 Jan 26; 254(2):245-83. PubMed ID: 1082506 [Abstract] [Full Text] [Related]
32. Intramembranous charge movement in frog cut twitch fibers mounted in a double vaseline-gap chamber. Hui CS, Chandler WK. J Gen Physiol; 1990 Aug 26; 96(2):257-97. PubMed ID: 2212983 [Abstract] [Full Text] [Related]
33. Existence of a sodium current in the tubular membrane of frog twitch muscle fibre; its possible role in the activation of contraction. Caillé J, Ildefonse M, Rougier O. Pflugers Arch; 1978 May 18; 374(2):167-77. PubMed ID: 307222 [Abstract] [Full Text] [Related]
34. Contractile activation in scorpion striated muscle fibers. Dependence on voltage and external calcium. Gilly WF, Scheuer T. J Gen Physiol; 1984 Sep 18; 84(3):321-45. PubMed ID: 6481333 [Abstract] [Full Text] [Related]
36. Increased optical transparency associated with excitation--contraction coupling in voltage-clamped cut skeletal muscle fibres. Kovács L, Schneider MF. Nature; 1977 Feb 10; 265(5594):556-60. PubMed ID: 299926 [No Abstract] [Full Text] [Related]
37. Calcium-induced calcium release in crayfish skeletal muscle. Györke S, Palade P. J Physiol; 1992 Nov 10; 457():195-210. PubMed ID: 1338456 [Abstract] [Full Text] [Related]
38. Calcium channels in skeletal muscle fibres of the frog. Hencek M, Zacharová D, Zachar J. Biomed Biochim Acta; 1989 Nov 10; 48(5-6):S345-9. PubMed ID: 2547359 [Abstract] [Full Text] [Related]
39. Membrane capacitance in frog cut twitch fibers mounted in a double vaseline-gap chamber. Chandler WK, Hui CS. J Gen Physiol; 1990 Aug 10; 96(2):225-56. PubMed ID: 2212982 [Abstract] [Full Text] [Related]
40. Calcium transients and calcium binding to troponin at the contraction threshold in skeletal muscle. Kovács L, Szücs G, Csernoch L. Biophys J; 1987 Apr 10; 51(4):521-6. PubMed ID: 3495298 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]