These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 30650262

  • 21. Identifying protein complexes from protein-protein interaction networks based on the gene expression profile and core-attachment approach.
    Noori S, Al-A'Araji N, Al-Shamery E.
    J Bioinform Comput Biol; 2021 Jun; 19(3):2150009. PubMed ID: 33910494
    [Abstract] [Full Text] [Related]

  • 22. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X, Yang Z, Sang S, Zhou Z, Wang L, Zhang Y, Lin H, Wang J, Xu B.
    BMC Bioinformatics; 2018 Sep 21; 19(1):332. PubMed ID: 30241459
    [Abstract] [Full Text] [Related]

  • 23. CACO: A Core-Attachment Method With Cross-Species Functional Ortholog Information to Detect Human Protein Complexes.
    Wang W, Meng X, Xiang J, Shuai Y, Bedru HD, Li M.
    IEEE J Biomed Health Inform; 2023 Sep 21; 27(9):4569-4578. PubMed ID: 37399160
    [Abstract] [Full Text] [Related]

  • 24. A New Method for Detecting Protein Complexes based on the Three Node Cliques.
    Zhang W, Zou X.
    IEEE/ACM Trans Comput Biol Bioinform; 2015 Sep 21; 12(4):879-86. PubMed ID: 26357329
    [Abstract] [Full Text] [Related]

  • 25. Discovery of protein complexes with core-attachment structures from Tandem Affinity Purification (TAP) data.
    Wu M, Li XL, Kwoh CK, Ng SK, Wong L.
    J Comput Biol; 2012 Sep 21; 19(9):1027-42. PubMed ID: 21777084
    [Abstract] [Full Text] [Related]

  • 26. Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network.
    Shen X, Yi L, Jiang X, Zhao Y, Hu X, He T, Yang J.
    Methods; 2016 Nov 01; 110():90-96. PubMed ID: 27320204
    [Abstract] [Full Text] [Related]

  • 27. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.
    Cao B, Luo J, Liang C, Wang S, Song D.
    Comput Biol Chem; 2015 Oct 01; 58():173-81. PubMed ID: 26298638
    [Abstract] [Full Text] [Related]

  • 28. Discovering protein complexes in protein interaction networks via exploring the weak ties effect.
    Ma X, Gao L.
    BMC Syst Biol; 2012 Oct 01; 6 Suppl 1(Suppl 1):S6. PubMed ID: 23046740
    [Abstract] [Full Text] [Related]

  • 29. Weighted edge based clustering to identify protein complexes in protein-protein interaction networks incorporating gene expression profile.
    Keretsu S, Sarmah R.
    Comput Biol Chem; 2016 Dec 01; 65():69-79. PubMed ID: 27771556
    [Abstract] [Full Text] [Related]

  • 30. Identifying Protein Complexes from Dynamic Temporal Interval Protein-Protein Interaction Networks.
    Zhang J, Zhong C, Lin HX, Wang M.
    Biomed Res Int; 2019 Dec 01; 2019():3726721. PubMed ID: 31531351
    [Abstract] [Full Text] [Related]

  • 31. Protein Complexes Prediction Method Based on Core-Attachment Structure and Functional Annotations.
    Li B, Liao B.
    Int J Mol Sci; 2017 Sep 06; 18(9):. PubMed ID: 28878201
    [Abstract] [Full Text] [Related]

  • 32. Mining Temporal Protein Complex Based on the Dynamic PIN Weighted with Connected Affinity and Gene Co-Expression.
    Shen X, Yi L, Jiang X, He T, Hu X, Yang J.
    PLoS One; 2016 Sep 06; 11(4):e0153967. PubMed ID: 27100396
    [Abstract] [Full Text] [Related]

  • 33. Identification of Protein Complexes by Using a Spatial and Temporal Active Protein Interaction Network.
    Li M, Meng X, Zheng R, Wu FX, Li Y, Pan Y, Wang J.
    IEEE/ACM Trans Comput Biol Bioinform; 2020 Sep 06; 17(3):817-827. PubMed ID: 28885159
    [Abstract] [Full Text] [Related]

  • 34. Protein complex detection based on flower pollination mechanism in multi-relation reconstructed dynamic protein networks.
    Lei X, Fang M, Guo L, Wu FX.
    BMC Bioinformatics; 2019 Mar 29; 20(Suppl 3):131. PubMed ID: 30925866
    [Abstract] [Full Text] [Related]

  • 35. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B, Guan J.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Mar 29; 11(4):616-27. PubMed ID: 26356332
    [Abstract] [Full Text] [Related]

  • 36. Identifying protein complexes by reducing noise in interaction networks.
    Liao B, Fu X, Cai L, Chen H.
    Protein Pept Lett; 2014 Jul 29; 21(7):688-95. PubMed ID: 24654850
    [Abstract] [Full Text] [Related]

  • 37. Identifying protein complexes based on an edge weight algorithm and core-attachment structure.
    Wang R, Liu G, Wang C.
    BMC Bioinformatics; 2019 Sep 14; 20(1):471. PubMed ID: 31521132
    [Abstract] [Full Text] [Related]

  • 38. Detecting complexes from edge-weighted PPI networks via genes expression analysis.
    Zhang Z, Song J, Tang J, Xu X, Guo F.
    BMC Syst Biol; 2018 Apr 24; 12(Suppl 4):40. PubMed ID: 29745859
    [Abstract] [Full Text] [Related]

  • 39. Molecular complex detection in protein interaction networks through reinforcement learning.
    Palukuri MV, Patil RS, Marcotte EM.
    BMC Bioinformatics; 2023 Aug 02; 24(1):306. PubMed ID: 37532987
    [Abstract] [Full Text] [Related]

  • 40. Identifying protein complexes based on the integration of PPI network and gene expression data.
    Chen W, Li M, Wu X, Wang J.
    Int J Bioinform Res Appl; 2015 Aug 02; 11(1):30-44. PubMed ID: 25667384
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.