These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
698 related items for PubMed ID: 30653406
21. Nuclear AMPK regulated CARM1 stabilization impacts autophagy in aged heart. Li C, Yu L, Xue H, Yang Z, Yin Y, Zhang B, Chen M, Ma H. Biochem Biophys Res Commun; 2017 Apr 29; 486(2):398-405. PubMed ID: 28315332 [Abstract] [Full Text] [Related]
22. FoxO Transcription Factors Are Critical Regulators of Diabetes-Related Muscle Atrophy. O'Neill BT, Bhardwaj G, Penniman CM, Krumpoch MT, Suarez Beltran PA, Klaus K, Poro K, Li M, Pan H, Dreyfuss JM, Nair KS, Kahn CR. Diabetes; 2019 Mar 29; 68(3):556-570. PubMed ID: 30523026 [Abstract] [Full Text] [Related]
23. FoxO3 controls autophagy in skeletal muscle in vivo. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M. Cell Metab; 2007 Dec 29; 6(6):458-71. PubMed ID: 18054315 [Abstract] [Full Text] [Related]
24. CARM1 contributes to skeletal muscle wasting by mediating FoxO3 activity and promoting myofiber autophagy. Liu Y, Li J, Shang Y, Guo Y, Li Z. Exp Cell Res; 2019 Jan 01; 374(1):198-209. PubMed ID: 30500392 [Abstract] [Full Text] [Related]
25. Histone deacetylase 6 is a FoxO transcription factor-dependent effector in skeletal muscle atrophy. Ratti F, Ramond F, Moncollin V, Simonet T, Milan G, Méjat A, Thomas JL, Streichenberger N, Gilquin B, Matthias P, Khochbin S, Sandri M, Schaeffer L. J Biol Chem; 2015 Feb 13; 290(7):4215-24. PubMed ID: 25516595 [Abstract] [Full Text] [Related]
26. Dkk3 dependent transcriptional regulation controls age related skeletal muscle atrophy. Yin J, Yang L, Xie Y, Liu Y, Li S, Yang W, Xu B, Ji H, Ding L, Wang K, Li G, Chen L, Hu P. Nat Commun; 2018 May 01; 9(1):1752. PubMed ID: 29717119 [Abstract] [Full Text] [Related]
27. Glucocorticoid-induced skeletal muscle atrophy. Schakman O, Kalista S, Barbé C, Loumaye A, Thissen JP. Int J Biochem Cell Biol; 2013 Oct 01; 45(10):2163-72. PubMed ID: 23806868 [Abstract] [Full Text] [Related]
28. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ. Mol Cell; 2004 May 07; 14(3):395-403. PubMed ID: 15125842 [Abstract] [Full Text] [Related]
29. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle. Gonçalves DA, Lira EC, Baviera AM, Cao P, Zanon NM, Arany Z, Bedard N, Tanksale P, Wing SS, Lecker SH, Kettelhut IC, Navegantes LC. Endocrinology; 2009 Dec 07; 150(12):5395-404. PubMed ID: 19837877 [Abstract] [Full Text] [Related]
30. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. Léger B, Cartoni R, Praz M, Lamon S, Dériaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP. J Physiol; 2006 Nov 01; 576(Pt 3):923-33. PubMed ID: 16916907 [Abstract] [Full Text] [Related]
31. Posttranslational modifications control FoxO3 activity during denervation. Bertaggia E, Coletto L, Sandri M. Am J Physiol Cell Physiol; 2012 Feb 01; 302(3):C587-96. PubMed ID: 22094330 [Abstract] [Full Text] [Related]
32. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. Raffaello A, Milan G, Masiero E, Carnio S, Lee D, Lanfranchi G, Goldberg AL, Sandri M. J Cell Biol; 2010 Oct 04; 191(1):101-13. PubMed ID: 20921137 [Abstract] [Full Text] [Related]
33. Effects of short-term endurance exercise training on acute doxorubicin-induced FoxO transcription in cardiac and skeletal muscle. Kavazis AN, Smuder AJ, Powers SK. J Appl Physiol (1985); 2014 Aug 01; 117(3):223-30. PubMed ID: 24947024 [Abstract] [Full Text] [Related]
34. Autophagy controls neonatal myogenesis by regulating the GH-IGF1 system through a NFE2L2- and DDIT3-mediated mechanism. Zecchini S, Giovarelli M, Perrotta C, Morisi F, Touvier T, Di Renzo I, Moscheni C, Bassi MT, Cervia D, Sandri M, Clementi E, De Palma C. Autophagy; 2019 Jan 01; 15(1):58-77. PubMed ID: 30081710 [Abstract] [Full Text] [Related]
35. Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. Jamart C, Francaux M, Millet GY, Deldicque L, Frère D, Féasson L. J Appl Physiol (1985); 2012 May 01; 112(9):1529-37. PubMed ID: 22345427 [Abstract] [Full Text] [Related]
36. Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Mammucari C, Schiaffino S, Sandri M. Autophagy; 2008 May 01; 4(4):524-6. PubMed ID: 18367868 [Abstract] [Full Text] [Related]
37. Key considerations for investigating and interpreting autophagy in skeletal muscle. Rahman FA, Baechler BL, Quadrilatero J. Autophagy; 2024 Oct 01; 20(10):2121-2132. PubMed ID: 39007805 [Abstract] [Full Text] [Related]
38. Conessine Treatment Reduces Dexamethasone-Induced Muscle Atrophy by Regulating MuRF1 and Atrogin-1 Expression. Kim H, Jang M, Park R, Jo D, Choi I, Choe J, Oh WK, Park J. J Microbiol Biotechnol; 2018 Apr 28; 28(4):520-526. PubMed ID: 29724080 [Abstract] [Full Text] [Related]
39. miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle. Hudson MB, Rahnert JA, Zheng B, Woodworth-Hobbs ME, Franch HA, Price SR. Am J Physiol Cell Physiol; 2014 Aug 15; 307(4):C314-9. PubMed ID: 24871856 [Abstract] [Full Text] [Related]
40. Docosahexaenoic acid prevents palmitate-induced activation of proteolytic systems in C2C12 myotubes. Woodworth-Hobbs ME, Hudson MB, Rahnert JA, Zheng B, Franch HA, Price SR. J Nutr Biochem; 2014 Aug 15; 25(8):868-74. PubMed ID: 24835079 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]