These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
377 related items for PubMed ID: 30657497
1. Achieving a direct band gap and high power conversion efficiency in an SbI3/BiI3 type-II vdW heterostructure via interlayer compression and electric field application. Lai K, Li H, Xu YK, Zhang WB, Dai J. Phys Chem Chem Phys; 2019 Jan 30; 21(5):2619-2627. PubMed ID: 30657497 [Abstract] [Full Text] [Related]
2. Effect of external electric field on the electronic properties of the AlAs/SiC van der Waals heterostructure. Zhang Z, Wan C, Li H, Liu C, Meng L, Yan X. Phys Chem Chem Phys; 2023 Oct 18; 25(40):27766-27773. PubMed ID: 37814790 [Abstract] [Full Text] [Related]
3. InSe/Te van der Waals Heterostructure as a High-Efficiency Solar Cell from Computational Screening. Ma Z, Li R, Xiong R, Zhang Y, Xu C, Wen C, Sa B. Materials (Basel); 2021 Jul 06; 14(14):. PubMed ID: 34300687 [Abstract] [Full Text] [Related]
4. Modulating the electronic properties and band alignments of the arsenene/MoSi2N4 van der Waals heterostructure via applying strain and electric field. Zhao J, Qi Y, Yao C, Zeng H. Phys Chem Chem Phys; 2023 Dec 13; 25(48):33023-33030. PubMed ID: 38032541 [Abstract] [Full Text] [Related]
10. A Type-II BiTeCl/SnSe2 Heterostructure with High Photoelectric Conversion Efficiency and Tunable Optoelectronic Properties for Photovoltaic Applications. Peng Y, Fang L, Lv H, Wang G. Langmuir; 2024 Sep 17; 40(37):19861-19869. PubMed ID: 39241230 [Abstract] [Full Text] [Related]
11. Electronic structures and photovoltaic applications of vdW heterostructures based on Janus group-IV monochalcogenides: insights from first-principles calculations. Cheng K, Hu W, Guo X, Wu L, Guo S, Su Y. Phys Chem Chem Phys; 2023 Feb 15; 25(7):5663-5672. PubMed ID: 36734472 [Abstract] [Full Text] [Related]
12. A design rule for two-dimensional van der Waals heterostructures with unconventional band alignments. Si Y, Wu HY, Lian JC, Huang WQ, Hu WY, Huang GF. Phys Chem Chem Phys; 2020 Feb 07; 22(5):3037-3047. PubMed ID: 31960006 [Abstract] [Full Text] [Related]
13. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures. Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y, Wang P, Zhang D, Zeng C, Wang X, Hu W, Fan HJ, Shen G, Chen X, Duan X, Chang K, Dai N. ACS Nano; 2016 Mar 22; 10(3):3852-8. PubMed ID: 26950255 [Abstract] [Full Text] [Related]
18. Intriguing electronic, optical and photocatalytic performance of BSe, M2CO2 monolayers and BSe-M2CO2 (M = Ti, Zr, Hf) van der Waals heterostructures. Munawar M, Idrees M, Ahmad I, Din HU, Amin B. RSC Adv; 2021 Dec 20; 12(1):42-52. PubMed ID: 35424496 [Abstract] [Full Text] [Related]
19. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Idrees M, Din HU, Ali R, Rehman G, Hussain T, Nguyen CV, Ahmad I, Amin B. Phys Chem Chem Phys; 2019 Aug 28; 21(34):18612-18621. PubMed ID: 31414085 [Abstract] [Full Text] [Related]