These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1028 related items for PubMed ID: 30683746
1. Primary and Secondary Metabolic Effects of a Key Gene Deletion (ΔYPL062W) in Metabolically Engineered Terpenoid-Producing Saccharomyces cerevisiae. Chen Y, Wang Y, Liu M, Qu J, Yao M, Li B, Ding M, Liu H, Xiao W, Yuan Y. Appl Environ Microbiol; 2019 Apr 01; 85(7):. PubMed ID: 30683746 [Abstract] [Full Text] [Related]
2. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. de Jong BW, Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J. J Ind Microbiol Biotechnol; 2015 Mar 01; 42(3):477-86. PubMed ID: 25422103 [Abstract] [Full Text] [Related]
3. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production. Gruchattka E, Kayser O. PLoS One; 2015 Mar 01; 10(12):e0144981. PubMed ID: 26701782 [Abstract] [Full Text] [Related]
4. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J. J Ind Microbiol Biotechnol; 2013 Sep 01; 40(9):1051-6. PubMed ID: 23760499 [Abstract] [Full Text] [Related]
5. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae. Quarterman J, Skerker JM, Feng X, Liu IY, Zhao H, Arkin AP, Jin YS. J Biotechnol; 2016 Jul 10; 229():13-21. PubMed ID: 27140870 [Abstract] [Full Text] [Related]
6. Self-controlled in silico gene knockdown strategies to enhance the sustainable production of heterologous terpenoid by Saccharomyces cerevisiae. Zhang N, Li X, Zhou Q, Zhang Y, Lv B, Hu B, Li C. Metab Eng; 2024 May 10; 83():172-182. PubMed ID: 38648878 [Abstract] [Full Text] [Related]
7. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Cardenas J, Da Silva NA. Metab Eng; 2016 Jul 10; 36():80-89. PubMed ID: 26969250 [Abstract] [Full Text] [Related]
8. In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Gruchattka E, Hädicke O, Klamt S, Schütz V, Kayser O. Microb Cell Fact; 2013 Sep 23; 12():84. PubMed ID: 24059635 [Abstract] [Full Text] [Related]
10. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR, Jensen NB, Schneider K, Czarnotta E, Özdemir E, Klein T, Maury J, Ebert BE, Christensen HB, Chen Y, Kim IK, Herrgård MJ, Blank LM, Forster J, Nielsen J, Borodina I. Microb Cell Fact; 2016 Mar 15; 15():53. PubMed ID: 26980206 [Abstract] [Full Text] [Related]
11. Mevalonate production from ethanol by direct conversion through acetyl-CoA using recombinant Pseudomonas putida, a novel biocatalyst for terpenoid production. Yang J, Son JH, Kim H, Cho S, Na JG, Yeon YJ, Lee J. Microb Cell Fact; 2019 Oct 10; 18(1):168. PubMed ID: 31601210 [Abstract] [Full Text] [Related]
12. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae. Xue T, Liu K, Chen D, Yuan X, Fang J, Yan H, Huang L, Chen Y, He W. World J Microbiol Biotechnol; 2018 Oct 01; 34(10):154. PubMed ID: 30276556 [Abstract] [Full Text] [Related]
13. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Chen Y, Xiao W, Wang Y, Liu H, Li X, Yuan Y. Microb Cell Fact; 2016 Jun 21; 15(1):113. PubMed ID: 27329233 [Abstract] [Full Text] [Related]
14. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Papapetridis I, van Dijk M, Dobbe AP, Metz B, Pronk JT, van Maris AJ. Microb Cell Fact; 2016 Apr 26; 15():67. PubMed ID: 27118055 [Abstract] [Full Text] [Related]
15. Polygenic Analysis in Absence of Major Effector ATF1 Unveils Novel Components in Yeast Flavor Ester Biosynthesis. Holt S, Trindade de Carvalho B, Foulquié-Moreno MR, Thevelein JM. mBio; 2018 Aug 28; 9(4):. PubMed ID: 30154260 [Abstract] [Full Text] [Related]
16. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production. Mukherjee M, Blair RH, Wang ZQ. Metab Eng; 2022 Nov 28; 74():139-149. PubMed ID: 36341776 [Abstract] [Full Text] [Related]
17. Beneficial effect of optimizing the expression balance of the mevalonate pathway introduced into the mitochondria on terpenoid production in Saccharomyces cerevisiae. Yanagibashi S, Bamba T, Kirisako T, Kondo A, Hasunuma T. J Biosci Bioeng; 2024 Jan 28; 137(1):16-23. PubMed ID: 38042754 [Abstract] [Full Text] [Related]
18. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L. J Biotechnol; 2014 Sep 30; 186():128-36. PubMed ID: 25016205 [Abstract] [Full Text] [Related]
19. Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes. Yamamoto K, Hara KY, Morita T, Nishimura A, Sasaki D, Ishii J, Ogino C, Kizaki N, Kondo A. Microb Cell Fact; 2016 Sep 13; 15(1):155. PubMed ID: 27624332 [Abstract] [Full Text] [Related]
20. Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway. Liu H, Fan J, Wang C, Li C, Zhou X. J Agric Food Chem; 2019 Apr 03; 67(13):3723-3732. PubMed ID: 30808164 [Abstract] [Full Text] [Related] Page: [Next] [New Search]