These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


576 related items for PubMed ID: 30690178

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. A sensitive bimetallic copper/bismuth metal-organic frameworks-based aptasensors for zearalenone detection in foodstuffs.
    Kang M, Yao Y, Yuan B, Zhang S, Oderinde O, Zhang Z.
    Food Chem; 2024 Mar 30; 437(Pt 1):137827. PubMed ID: 37897827
    [Abstract] [Full Text] [Related]

  • 3. A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline.
    Liu S, Wang Y, Xu W, Leng X, Wang H, Guo Y, Huang J.
    Biosens Bioelectron; 2017 Feb 15; 88():181-187. PubMed ID: 27544787
    [Abstract] [Full Text] [Related]

  • 4. Surface-enhanced Raman spectroscopy aptasensor for simultaneous determination of ochratoxin A and zearalenone using Au@Ag core-shell nanoparticles and gold nanorods.
    Chen R, Li S, Sun Y, Huo B, Xia Y, Qin Y, Li S, Shi B, He D, Liang J, Gao Z.
    Mikrochim Acta; 2021 Jul 31; 188(8):281. PubMed ID: 34331147
    [Abstract] [Full Text] [Related]

  • 5. Electrochemical aptasensor based on Ce3NbO7/CeO2@Au hollow nanospheres by using Nb.BbvCI-triggered and bipedal DNA walker amplification strategy for zearalenone detection.
    Yan H, He B, Zhao R, Ren W, Suo Z, Xu Y, Zhang Y, Bai C, Yan H, Liu R.
    J Hazard Mater; 2022 Sep 15; 438():129491. PubMed ID: 35785741
    [Abstract] [Full Text] [Related]

  • 6. A target-induced amperometic aptasensor for sensitive zearalenone detection by CS@AB-MWCNTs nanocomposite as enhancers.
    Mu Z, Ma L, Wang J, Zhou J, Yuan Y, Bai L.
    Food Chem; 2021 Mar 15; 340():128128. PubMed ID: 33010646
    [Abstract] [Full Text] [Related]

  • 7. An electrochemical aptasensor based on P-Ce-MOF@MWCNTs as signal amplification strategy for highly sensitive detection of zearalenone.
    Lai H, Ming P, Wu M, Wang S, Sun D, Zhai H.
    Food Chem; 2023 Oct 15; 423():136331. PubMed ID: 37182496
    [Abstract] [Full Text] [Related]

  • 8. Aptasensor based on gold nanostructure-decorated 2D Cu metal-organic framework nanosheets for highly sensitive and specific electrochemical lipopolysaccharide detection.
    Tong Y, Chen M, Huang X, Xu Y, Zhang L, Yu Z, Liu SY, Dai Z.
    Mikrochim Acta; 2024 Aug 01; 191(8):500. PubMed ID: 39088046
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. An electrochemical aptamer-sensing strategy based on a Ti3C2Tx MXene synergistic Ti-MOF amplification signal for highly sensitive detection of zearalenone.
    Zhao K, Zhang B, Cui X, Chao X, Song F, Chen H, He B.
    Food Chem; 2024 Dec 15; 461():140828. PubMed ID: 39151347
    [Abstract] [Full Text] [Related]

  • 11. Ultrasensitive electrochemical detection of ochratoxin A based on signal amplification by one-pot synthesized flower-like PEDOT-AuNFs supported on a graphene oxide sponge.
    Wang P, Wang L, Ding M, Pei M, Guo W.
    Analyst; 2019 Oct 07; 144(19):5866-5874. PubMed ID: 31482879
    [Abstract] [Full Text] [Related]

  • 12. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and Au NPs (rMoS2-Au) for multiplex detection of mycotoxins.
    Han Z, Tang Z, Jiang K, Huang Q, Meng J, Nie D, Zhao Z.
    Biosens Bioelectron; 2020 Feb 15; 150():111894. PubMed ID: 31761484
    [Abstract] [Full Text] [Related]

  • 13. A sensitive electrochemical aptasensor for zearalenone detection based on target-triggered branched hybridization chain reaction and exonuclease I-assisted recycling.
    Liao Z, Guo W, Ning G, Wu Y, Wang Y, Ning G.
    Anal Bioanal Chem; 2023 Aug 15; 415(20):4911-4921. PubMed ID: 37326832
    [Abstract] [Full Text] [Related]

  • 14. SERS aptasensor for simultaneous detection of ochratoxin A and zearalenone utilizing a rigid enhanced substrate (ITO/AuNPs/GO) combined with Au@AgNPs.
    Xue S, Gao L, Yin L, El-Seedi HR, Abolibda TZ, Zou X, Guo Z.
    Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan 05; 324():124991. PubMed ID: 39163773
    [Abstract] [Full Text] [Related]

  • 15. Electrochemical determination of zearalenone using a label-free competitive aptasensor.
    Azri FA, Eissa S, Zourob M, Chinnappan R, Sukor R, Yusof NA, Raston NHA, Alhoshani A, Jinap S.
    Mikrochim Acta; 2020 Apr 12; 187(5):266. PubMed ID: 32279134
    [Abstract] [Full Text] [Related]

  • 16. Development of Fe3O4@Au nanoparticles coupled to Au@Ag core-shell nanoparticles for the sensitive detection of zearalenone.
    Chen R, Sun Y, Huo B, Mao Z, Wang X, Li S, Lu R, Li S, Liang J, Gao Z.
    Anal Chim Acta; 2021 Oct 02; 1180():338888. PubMed ID: 34538331
    [Abstract] [Full Text] [Related]

  • 17. Thrombin aptasensor enabled by Pt nanoparticles-functionalized Co-based metal organic frameworks assisted electrochemical signal amplification.
    Yang Y, Yang Z, Lv J, Yuan R, Chai Y.
    Talanta; 2017 Jul 01; 169():44-49. PubMed ID: 28411820
    [Abstract] [Full Text] [Related]

  • 18. Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon: Label-free aptasensor for ultrasensitive tobramycin detection.
    Wang S, Li Z, Duan F, Hu B, He L, Wang M, Zhou N, Jia Q, Zhang Z.
    Anal Chim Acta; 2019 Jan 24; 1047():150-162. PubMed ID: 30567645
    [Abstract] [Full Text] [Related]

  • 19. l-cysteine induced manganese porphyrin electrocatalytic amplification with 3D DNA-Au@Pt nanoparticles as nanocarriers for sensitive electrochemical aptasensor.
    Zheng Y, Yuan Y, Chai Y, Yuan R.
    Biosens Bioelectron; 2016 May 15; 79():86-91. PubMed ID: 26700580
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.