These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium. Sharmin R, Ioannidis MA, Legge RL. J Contam Hydrol; 2006 Jan 05; 82(1-2):145-64. PubMed ID: 16274842 [Abstract] [Full Text] [Related]
3. Dissolution and remobilization of NAPL in surfactant-enhanced aquifer remediation from microscopic scale simulations. Ramezanzadeh M, Aminnaji M, Rezanezhad F, Ghazanfari MH, Babaei M. Chemosphere; 2022 Feb 05; 289():133177. PubMed ID: 34890610 [Abstract] [Full Text] [Related]
4. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points. Saenton S, Illangasekare TH, Soga K, Saba TA. J Contam Hydrol; 2002 Nov 05; 59(1-2):27-44. PubMed ID: 12683638 [Abstract] [Full Text] [Related]
6. Remediation of trapped DNAPL enhanced by SDS surfactant and silica nanoparticles in heterogeneous porous media: experimental data and empirical models. Ramezanzadeh M, Khasi S, Fatemi M, Ghazanfari MH. Environ Sci Pollut Res Int; 2020 Jan 05; 27(3):2658-2669. PubMed ID: 31836978 [Abstract] [Full Text] [Related]
7. Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field. Saba T, Illangasekare TH, Ewing J. J Contam Hydrol; 2001 Sep 05; 51(1-2):63-82. PubMed ID: 11530927 [Abstract] [Full Text] [Related]
8. A pore-scale investigation of heavy crude oil trapping and removal during surfactant-enhanced remediation. Ghosh J, Tick GR, Akyol NH, Zhang Y. J Contam Hydrol; 2019 Jun 05; 223():103471. PubMed ID: 31014903 [Abstract] [Full Text] [Related]
9. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL. Sharma P, Kostarelos K, Lenschow S, Christensen A, de Blanc PC. J Contam Hydrol; 2020 Mar 05; 230():103602. PubMed ID: 32005455 [Abstract] [Full Text] [Related]
13. Density-modified displacement for dense nonaqueous-phase liquid source-zone remediation: density conversion using a partitioning alcohol. Ramsburg CA, Pennell KD. Environ Sci Technol; 2002 May 01; 36(9):2082-7. PubMed ID: 12026997 [Abstract] [Full Text] [Related]
14. Enhanced aqueous solubilization of tetrachloroethylene by a rhamnolipid biosurfactant. Clifford JS, Ioannidis MA, Legge RL. J Colloid Interface Sci; 2007 Jan 15; 305(2):361-5. PubMed ID: 17081555 [Abstract] [Full Text] [Related]
15. Evaluation of ethoxylated nonionic surfactants for solubilization of chlorinated organic phases: Effects of partitioning loss and macroemulsion formation. Kang S, Lim HS, Gao Y, Kang J, Jeong HY. J Contam Hydrol; 2019 Jun 15; 223():103475. PubMed ID: 31029465 [Abstract] [Full Text] [Related]
17. Influence of aqueous film forming foams on the solubility and mobilization of non-aqueous phase liquid contaminants in quartz sands. Liao S, Saleeba Z, Bryant JD, Abriola LM, Pennell KD. Water Res; 2021 May 01; 195():116975. PubMed ID: 33677241 [Abstract] [Full Text] [Related]
18. Non-steady state partitioning of dry cleaning surfactants between tetrachloroethylene (PCE) and water in porous media. Hoggan JL, Bae K, Kibbey TC. J Contam Hydrol; 2007 Aug 15; 93(1-4):149-60. PubMed ID: 17303284 [Abstract] [Full Text] [Related]