These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


379 related items for PubMed ID: 30697731

  • 1. TBX3 promotes progression of pre-invasive breast cancer cells by inducing EMT and directly up-regulating SLUG.
    Krstic M, Kolendowski B, Cecchini MJ, Postenka CO, Hassan HM, Andrews J, MacMillan CD, Williams KC, Leong HS, Brackstone M, Torchia J, Chambers AF, Tuck AB.
    J Pathol; 2019 Jun; 248(2):191-203. PubMed ID: 30697731
    [Abstract] [Full Text] [Related]

  • 2. The transcriptional regulator TBX3 promotes progression from non-invasive to invasive breast cancer.
    Krstic M, Macmillan CD, Leong HS, Clifford AG, Souter LH, Dales DW, Postenka CO, Chambers AF, Tuck AB.
    BMC Cancer; 2016 Aug 23; 16(1):671. PubMed ID: 27553211
    [Abstract] [Full Text] [Related]

  • 3. TOPK promotes epithelial-mesenchymal transition and invasion of breast cancer cells through upregulation of TBX3 in TGF-β1/Smad signaling.
    Lee YJ, Park JH, Oh SM.
    Biochem Biophys Res Commun; 2020 Jan 29; 522(1):270-277. PubMed ID: 31757421
    [Abstract] [Full Text] [Related]

  • 4. Heterodimer formation by Oct4 and Smad3 differentially regulates epithelial-to-mesenchymal transition-associated factors in breast cancer progression.
    Mandal G, Biswas S, Roy Chowdhury S, Chatterjee A, Purohit S, Khamaru P, Chakraborty S, Mandal PK, Gupta A, de la Mare JA, Edkins AL, Bhattacharyya A.
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun 29; 1864(6 Pt A):2053-2066. PubMed ID: 29526821
    [Abstract] [Full Text] [Related]

  • 5. Myoepithelial cell-specific expression of stefin A as a suppressor of early breast cancer invasion.
    Duivenvoorden HM, Rautela J, Edgington-Mitchell LE, Spurling A, Greening DW, Nowell CJ, Molloy TJ, Robbins E, Brockwell NK, Lee CS, Chen M, Holliday A, Selinger CI, Hu M, Britt KL, Stroud DA, Bogyo M, Möller A, Polyak K, Sloane BF, O'Toole SA, Parker BS.
    J Pathol; 2017 Dec 29; 243(4):496-509. PubMed ID: 29086922
    [Abstract] [Full Text] [Related]

  • 6. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion.
    Elsarraj HS, Hong Y, Valdez KE, Michaels W, Hook M, Smith WP, Chien J, Herschkowitz JI, Troester MA, Beck M, Inciardi M, Gatewood J, May L, Cusick T, McGinness M, Ricci L, Fan F, Tawfik O, Marks JR, Knapp JR, Yeh HW, Thomas P, Carrasco DR, Fields TA, Godwin AK, Behbod F.
    Breast Cancer Res; 2015 Sep 17; 17():128. PubMed ID: 26384318
    [Abstract] [Full Text] [Related]

  • 7. Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a Slug-dependent manner.
    Shao S, Zhao X, Zhang X, Luo M, Zuo X, Huang S, Wang Y, Gu S, Zhao X.
    Mol Cancer; 2015 Feb 03; 14(1):28. PubMed ID: 25645291
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Transcription factors associated with epithelial-mesenchymal transition and cancer stem cells in the tumor centre and margin of invasive breast cancer.
    Alkatout I, Wiedermann M, Bauer M, Wenners A, Jonat W, Klapper W.
    Exp Mol Pathol; 2013 Feb 03; 94(1):168-73. PubMed ID: 22985790
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. ΔNp63α Promotes Breast Cancer Cell Motility through the Selective Activation of Components of the Epithelial-to-Mesenchymal Transition Program.
    Dang TT, Esparza MA, Maine EA, Westcott JM, Pearson GW.
    Cancer Res; 2015 Sep 15; 75(18):3925-35. PubMed ID: 26292362
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma in situ through activation of TGFβ signaling.
    Lo PK, Zhang Y, Yao Y, Wolfson B, Yu J, Han SY, Duru N, Zhou Q.
    J Biol Chem; 2017 Jul 07; 292(27):11466-11484. PubMed ID: 28512126
    [Abstract] [Full Text] [Related]

  • 15. miR-497 inhibits epithelial mesenchymal transition in breast carcinoma by targeting Slug.
    Wu Z, Li X, Cai X, Huang C, Zheng M.
    Tumour Biol; 2016 Jun 07; 37(6):7939-50. PubMed ID: 26700673
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. ΔNp63α induces the expression of FAT2 and Slug to promote tumor invasion.
    Dang TT, Westcott JM, Maine EA, Kanchwala M, Xing C, Pearson GW.
    Oncotarget; 2016 May 10; 7(19):28592-611. PubMed ID: 27081041
    [Abstract] [Full Text] [Related]

  • 19. BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer.
    Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC, Harris AL, Fox SB.
    Clin Cancer Res; 2007 Jan 15; 13(2 Pt 1):467-74. PubMed ID: 17255267
    [Abstract] [Full Text] [Related]

  • 20. Transcriptional profiling identifies upregulated genes following induction of epithelial-mesenchymal transition in squamous carcinoma cells.
    Humtsoe JO, Koya E, Pham E, Aramoto T, Zuo J, Ishikawa T, Kramer RH.
    Exp Cell Res; 2012 Feb 15; 318(4):379-90. PubMed ID: 22154512
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.