These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 30698923
21. Synergistic Crystallization Modulation and Defects Passivation in Kesterite via Anion-Coordinate Precursor Engineering for Efficient Solar Cells. Wang L, Chu L, Zhou Z, Zhou W, Kou D, Meng Y, Qi Y, Yuan S, Han L, Yang G, Zhang Z, Zheng Z, Wu S. Adv Sci (Weinh); 2024 Sep; 11(35):e2405016. PubMed ID: 39031982 [Abstract] [Full Text] [Related]
22. A Thin In2 S3 Interfacial Layer for Reducing Defects and Roughness of Cu2 ZnSn(S,Se)4 Thin-Film Solar Cells. Eun Song J, Kyung Hwang S, Hyun Park J, Young Kim J. ChemSusChem; 2022 Feb 18; 15(4):e202102350. PubMed ID: 34939335 [Abstract] [Full Text] [Related]
23. Inkjet-Printed Cu2ZnSn(S, Se)4 Solar Cells. Lin X, Kavalakkatt J, Lux-Steiner MC, Ennaoui A. Adv Sci (Weinh); 2015 Jun 18; 2(6):1500028. PubMed ID: 27980949 [Abstract] [Full Text] [Related]
24. N-Type Surface Design for p-Type CZTSSe Thin Film to Attain High Efficiency. Sun Y, Qiu P, Yu W, Li J, Guo H, Wu L, Luo H, Meng R, Zhang Y, Liu SF. Adv Mater; 2021 Dec 18; 33(49):e2104330. PubMed ID: 34623707 [Abstract] [Full Text] [Related]
25. Substitution of Ag for Cu in Cu2ZnSn(S,Se)4: Toward Wide Band Gap Absorbers with Low Antisite Defects for Thin Film Solar Cells. Wu Y, Sui Y, He W, Zeng F, Wang Z, Wang F, Yao B, Yang L. Nanomaterials (Basel); 2020 Jan 03; 10(1):. PubMed ID: 31947756 [Abstract] [Full Text] [Related]
26. Ge Bidirectional Diffusion to Simultaneously Engineer Back Interface and Bulk Defects in the Absorber for Efficient CZTSSe Solar Cells. Wang J, Zhou J, Xu X, Meng F, Xiang C, Lou L, Yin K, Duan B, Wu H, Shi J, Luo Y, Li D, Xin H, Meng Q. Adv Mater; 2022 Jul 03; 34(27):e2202858. PubMed ID: 35523720 [Abstract] [Full Text] [Related]
27. Antimony Doping in Solution-processed Cu2 ZnSn(S,Se)4 Solar Cells. Tai KF, Fu D, Chiam SY, Huan CH, Batabyal SK, Wong LH. ChemSusChem; 2015 Oct 26; 8(20):3504-11. PubMed ID: 26376602 [Abstract] [Full Text] [Related]
28. Significantly Improving the Crystal Growth of a Cu2ZnSn(S,Se)4 Absorber Layer by Air-Annealing a Cu2ZnSnS4 Precursor Thin Film. Shi X, Wang Y, Yu H, Wang G, Huang L, Pan D. ACS Appl Mater Interfaces; 2020 Sep 16; 12(37):41590-41595. PubMed ID: 32814424 [Abstract] [Full Text] [Related]
29. Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology. Mitzi DB, Gunawan O, Todorov TK, Barkhouse DA. Philos Trans A Math Phys Eng Sci; 2013 Aug 13; 371(1996):20110432. PubMed ID: 23816909 [Abstract] [Full Text] [Related]
30. Improvement of Efficiency in Kesterite Solar Cells by Intentionally Inserting a Thin MoS2 Layer into the Back Interface. Xu SZ, Song YP, Yao B, Li MG, Ding ZH, Deng R, Liang HN, Du XB, Li YF. ACS Appl Mater Interfaces; 2024 Feb 28; 16(8):11026-11034. PubMed ID: 38361494 [Abstract] [Full Text] [Related]
31. Elemental Precursor Solution Processed (Cu1-xAgx)2ZnSn(S,Se)4 Photovoltaic Devices with over 10% Efficiency. Qi Y, Tian Q, Meng Y, Kou D, Zhou Z, Zhou W, Wu S. ACS Appl Mater Interfaces; 2017 Jun 28; 9(25):21243-21250. PubMed ID: 28586190 [Abstract] [Full Text] [Related]
32. Kesterite Cu2Zn(Sn,Ge)(S,Se)4 thin film with controlled Ge-doping for photovoltaic application. Zhao W, Pan D, Liu SF. Nanoscale; 2016 May 21; 8(19):10160-5. PubMed ID: 27121893 [Abstract] [Full Text] [Related]
33. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells. Buffière M, Brammertz G, Sahayaraj S, Batuk M, Khelifi S, Mangin D, El Mel AA, Arzel L, Hadermann J, Meuris M, Poortmans J. ACS Appl Mater Interfaces; 2015 Jul 15; 7(27):14690-8. PubMed ID: 26039042 [Abstract] [Full Text] [Related]
34. Toward High Efficient Cu2 ZnSn(Sx ,Se1-x )4 Solar Cells: Break the Limitations of VOC and FF. Wang Z, Meng R, Guo H, Sun Y, Liu Y, Zhang H, Cao Z, Dong J, Xu X, Liang G, Lou L, Li D, Meng Q, Zhang Y. Small; 2023 Jun 15; 19(22):e2300634. PubMed ID: 36855059 [Abstract] [Full Text] [Related]
35. 8% Efficiency Cu2ZnSn(S,Se)4 (CZTSSe) Thin Film Solar Cells on Flexible and Lightweight Molybdenum Foil Substrates. Jo E, Gang MG, Shim H, Suryawanshi MP, Ghorpade UV, Kim JH. ACS Appl Mater Interfaces; 2019 Jul 03; 11(26):23118-23124. PubMed ID: 31252467 [Abstract] [Full Text] [Related]
36. Fabrication of a High-Quality Cu2ZnSn(S,Se)4 Absorber Layer via an Aqueous Solution Process and Application in Solar Cells. Zhao W, Yu F, Liu SF. ACS Appl Mater Interfaces; 2019 Jan 09; 11(1):634-639. PubMed ID: 30560655 [Abstract] [Full Text] [Related]
37. Influencing Mechanism of the Selenization Temperature and Time on the Power Conversion Efficiency of Cu2ZnSn(S,Se)4-Based Solar Cells. Xiao ZY, Yao B, Li YF, Ding ZH, Gao ZM, Zhao HF, Zhang LG, Zhang ZZ, Sui YR, Wang G. ACS Appl Mater Interfaces; 2016 Jul 13; 8(27):17334-42. PubMed ID: 27323648 [Abstract] [Full Text] [Related]
38. Using Cu-Zn-Sn-O Precursor to Optimize CZTSSe Thin Films Fabricated by Se Doping With CZTS Thin Films. Li Q, Hu J, Cui Y, Wang J, Hao Y, Shen T, Duan L. Front Chem; 2021 Jul 13; 9():621549. PubMed ID: 33937187 [Abstract] [Full Text] [Related]
39. Enhanced Carrier Collection in Cd/In-Based Dual Buffers in Kesterite Thin-Film Solar Cells from Nanoparticle Inks. Campbell S, Zoppi G, Bowen L, Maiello P, Barrioz V, Beattie NS, Qu Y. ACS Appl Energy Mater; 2023 Nov 13; 6(21):10883-10896. PubMed ID: 38020741 [Abstract] [Full Text] [Related]
40. Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol-Gel and Selenization Process. Liu F, Zeng F, Song N, Jiang L, Han Z, Su Z, Yan C, Wen X, Hao X, Liu Y. ACS Appl Mater Interfaces; 2015 Jul 08; 7(26):14376-83. PubMed ID: 26080031 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]