These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Earth-Abundant Chalcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu2 BaSn(S,Se)4 Absorber. Shin D, Zhu T, Huang X, Gunawan O, Blum V, Mitzi DB. Adv Mater; 2017 Jun; 29(24):. PubMed ID: 28425630 [Abstract] [Full Text] [Related]
43. Colloidal Precursor-Induced Growth of Ultra-Even CH3NH3PbI3 for High-Performance Paintable Carbon-Based Perovskite Solar Cells. Chang X, Li W, Chen H, Zhu L, Liu H, Geng H, Xiang S, Liu J, Zheng X, Yang Y, Yang S. ACS Appl Mater Interfaces; 2016 Nov 09; 8(44):30184-30192. PubMed ID: 27739309 [Abstract] [Full Text] [Related]
47. Suppressing Deep-Level Trap Toward Over 13% Efficient Solution-Processed Kesterite Solar Cell. Li Y, Jian Y, Huang F, Zhou N, Chai W, Hu J, Zhao J, Su Z, Chen S, Liang G. Small; 2024 Aug 09; 20(35):e2401330. PubMed ID: 38623959 [Abstract] [Full Text] [Related]
48. Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. Li W, Fan J, Li J, Mai Y, Wang L. J Am Chem Soc; 2015 Aug 19; 137(32):10399-405. PubMed ID: 26247096 [Abstract] [Full Text] [Related]
51. Solvent Engineering for Controlled Crystallization and Growth of All-Inorganic Pb-Free Rudorffite Absorbers of Perovskite Solar Cells. Shadabroo MS, Abdizadeh H, Shabani M, Golobostanfard MR. Inorg Chem; 2021 Aug 02; 60(15):11110-11119. PubMed ID: 34260211 [Abstract] [Full Text] [Related]
53. Aqueous-Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells via an Improved Successive Ion-Layer-Adsorption-Reaction Sequence. Suryawanshi MP, Ghorpade UV, Suryawanshi UP, He M, Kim J, Gang MG, Patil PS, Moholkar AV, Yun JH, Kim JH. ACS Omega; 2017 Dec 31; 2(12):9211-9220. PubMed ID: 31457436 [Abstract] [Full Text] [Related]
54. High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. Cao Y, Denny MS, Caspar JV, Farneth WE, Guo Q, Ionkin AS, Johnson LK, Lu M, Malajovich I, Radu D, Rosenfeld HD, Choudhury KR, Wu W. J Am Chem Soc; 2012 Sep 26; 134(38):15644-7. PubMed ID: 22963012 [Abstract] [Full Text] [Related]
55. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders. Yang Y, Wang G, Zhao W, Tian Q, Huang L, Pan D. ACS Appl Mater Interfaces; 2015 Jan 14; 7(1):460-4. PubMed ID: 25494493 [Abstract] [Full Text] [Related]
56. Nanoscale surface potential variation correlates with local S/Se ratio in solution-processed CZTSSe solar cells. Salvador M, Vorpahl SM, Xin H, Williamson W, Shao G, Karatay DU, Hillhouse HW, Ginger DS. Nano Lett; 2014 Dec 10; 14(12):6926-30. PubMed ID: 25372547 [Abstract] [Full Text] [Related]
57. Coordination engineering of Cu-Zn-Sn-S aqueous precursor for efficient kesterite solar cells. Guo L, Shi J, Yu Q, Duan B, Xu X, Zhou J, Wu J, Li Y, Li D, Wu H, Luo Y, Meng Q. Sci Bull (Beijing); 2020 May 15; 65(9):738-746. PubMed ID: 36659107 [Abstract] [Full Text] [Related]
58. Roughness-Controlled Cu2ZnSn(S,Se)4 Thin-Film Solar Cells with Reduced Charge Recombination. Cheon KB, Hwang SK, Seo SW, Park JH, Park MA, Kim JY. ACS Appl Mater Interfaces; 2019 Jul 10; 11(27):24088-24095. PubMed ID: 31199618 [Abstract] [Full Text] [Related]
59. Enhanced Carrier Collection from CdS Passivated Grains in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells. Werner M, Keller D, Haass SG, Gretener C, Bissig B, Fuchs P, La Mattina F, Erni R, Romanyuk YE, Tiwari AN. ACS Appl Mater Interfaces; 2015 Jun 10; 7(22):12141-6. PubMed ID: 25985349 [Abstract] [Full Text] [Related]
60. Efficiency enhancement of CZTSSe solar cells via screening the absorber layer by examining of different possible defects. Minbashi M, Ghobadi A, Yazdani E, Ahmadkhan Kordbacheh A, Hajjiah A. Sci Rep; 2020 Dec 11; 10(1):21813. PubMed ID: 33311529 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]