These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


308 related items for PubMed ID: 30700697

  • 1. Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill.
    Menna-Barreto RFS.
    Cell Death Dis; 2019 Jan 30; 10(2):93. PubMed ID: 30700697
    [Abstract] [Full Text] [Related]

  • 2. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi.
    Parsons M, Worthey EA, Ward PN, Mottram JC.
    BMC Genomics; 2005 Sep 15; 6():127. PubMed ID: 16164760
    [Abstract] [Full Text] [Related]

  • 3. The ultimate fate determinants of drug induced cell-death mechanisms in Trypanosomatids.
    Das P, Saha S, BoseDasgupta S.
    Int J Parasitol Drugs Drug Resist; 2021 Apr 15; 15():81-91. PubMed ID: 33601284
    [Abstract] [Full Text] [Related]

  • 4. Naphthoquinones and Derivatives for Chemotherapy: Perspectives and Limitations of their Anti-trypanosomatids Activities.
    Dantas-Pereira L, Cunha-Junior EF, Andrade-Neto VV, Bower JF, Jardim GAM, da Silva Júnior EN, Torres-Santos EC, Menna-Barreto RFS.
    Curr Pharm Des; 2021 Apr 15; 27(15):1807-1824. PubMed ID: 33167829
    [Abstract] [Full Text] [Related]

  • 5. The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics.
    Menna-Barreto RF, de Castro SL.
    Biomed Res Int; 2014 Apr 15; 2014():614014. PubMed ID: 24800243
    [Abstract] [Full Text] [Related]

  • 6. Targeting calcium homeostasis as the therapy of Chagas' disease and leishmaniasis - a review.
    Benaim B, Garcia CR.
    Trop Biomed; 2011 Dec 15; 28(3):471-81. PubMed ID: 22433874
    [Abstract] [Full Text] [Related]

  • 7. Unveiling the intracellular survival gene kit of trypanosomatid parasites.
    Bartholomeu DC, de Paiva RM, Mendes TA, DaRocha WD, Teixeira SM.
    PLoS Pathog; 2014 Dec 15; 10(12):e1004399. PubMed ID: 25474314
    [Abstract] [Full Text] [Related]

  • 8. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC, South L, Peng D, Bustamante JM, Wang W, Bunkofske M, Perumal N, Sanchez-Valdez F, Tarleton RL.
    mBio; 2017 Nov 07; 8(6):. PubMed ID: 29114029
    [Abstract] [Full Text] [Related]

  • 9. Signal Transduction Pathways as Therapeutic Target for Chagas Disease.
    Schoijet AC, Sternlieb T, Alonso GD.
    Curr Med Chem; 2019 Nov 07; 26(36):6572-6589. PubMed ID: 31218950
    [Abstract] [Full Text] [Related]

  • 10. Transient Superdiffusion and Long-Range Correlations in the Motility Patterns of Trypanosomatid Flagellate Protozoa.
    Alves LG, Scariot DB, Guimarães RR, Nakamura CV, Mendes RS, Ribeiro HV.
    PLoS One; 2016 Nov 07; 11(3):e0152092. PubMed ID: 27007779
    [Abstract] [Full Text] [Related]

  • 11. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists.
    Balcazar DE, Vanrell MC, Romano PS, Pereira CA, Goldbaum FA, Bonomi HR, Carrillo C.
    PLoS Negl Trop Dis; 2017 Apr 07; 11(4):e0005513. PubMed ID: 28406895
    [Abstract] [Full Text] [Related]

  • 12. Searching the Tritryp genomes for drug targets.
    Myler PJ.
    Adv Exp Med Biol; 2008 Apr 07; 625():133-40. PubMed ID: 18365664
    [Abstract] [Full Text] [Related]

  • 13. Identification of Novel Chemical Scaffolds Inhibiting Trypanothione Synthetase from Pathogenic Trypanosomatids.
    Benítez D, Medeiros A, Fiestas L, Panozzo-Zenere EA, Maiwald F, Prousis KC, Roussaki M, Calogeropoulou T, Detsi A, Jaeger T, Šarlauskas J, Peterlin Mašič L, Kunick C, Labadie GR, Flohé L, Comini MA.
    PLoS Negl Trop Dis; 2016 Apr 07; 10(4):e0004617. PubMed ID: 27070550
    [Abstract] [Full Text] [Related]

  • 14. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans.
    de Castro Neto AL, da Silveira JF, Mortara RA.
    Front Cell Infect Microbiol; 2021 Apr 07; 11():669079. PubMed ID: 33937106
    [Abstract] [Full Text] [Related]

  • 15. The use of Sulfonamide Derivatives in the Treatment of Trypanosomatid Parasites including Trypanosoma cruzi, Trypanosoma brucei, and Leishmania ssp.
    Scarim CB, Chelucci RC, Dos Santos JL, Chin CM.
    Med Chem; 2020 Apr 07; 16(1):24-38. PubMed ID: 31218962
    [Abstract] [Full Text] [Related]

  • 16. Programmed cell death in trypanosomatids: is it an altruistic mechanism for survival of the fittest?
    Debrabant A, Nakhasi H.
    Kinetoplastid Biol Dis; 2003 Jun 25; 2(1):7. PubMed ID: 12848897
    [Abstract] [Full Text] [Related]

  • 17. Is the mitochondrion a promising drug target in trypanosomatids?
    Pedra-Rezende Y, Bombaça ACS, Menna-Barreto RFS.
    Mem Inst Oswaldo Cruz; 2022 Jun 25; 117():e210379. PubMed ID: 35195164
    [Abstract] [Full Text] [Related]

  • 18. Challenges in drug discovery targeting TriTryp diseases with an emphasis on leishmaniasis.
    Alcântara LM, Ferreira TCS, Gadelha FR, Miguel DC.
    Int J Parasitol Drugs Drug Resist; 2018 Dec 25; 8(3):430-439. PubMed ID: 30293058
    [Abstract] [Full Text] [Related]

  • 19. Chemical Cartography Approaches to Study Trypanosomatid Infection.
    Dean DA, Haffner JJ, Katemauswa M, McCall LI.
    J Vis Exp; 2022 Jan 21; (179):. PubMed ID: 35129167
    [Abstract] [Full Text] [Related]

  • 20. The TryPIKinome of five human pathogenic trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, Leishmania major, Leishmania braziliensis and Leishmania infantum--new tools for designing specific inhibitors.
    Bahia D, Oliveira LM, Lima FM, Oliveira P, Silveira JF, Mortara RA, Ruiz JC.
    Biochem Biophys Res Commun; 2009 Dec 18; 390(3):963-70. PubMed ID: 19852933
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.