These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
781 related items for PubMed ID: 30707012
1. Ultrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities. Wang B, Ryu J, Choi S, Zhang X, Pribat D, Li X, Zhi L, Park S, Ruoff RS. ACS Nano; 2019 Feb 26; 13(2):2307-2315. PubMed ID: 30707012 [Abstract] [Full Text] [Related]
4. A Mechanically Flexible Necklace-Like Architecture for Achieving Fast Charging and High Capacity in Advanced Lithium-Ion Capacitors. Liang T, Mao Z, Li L, Wang R, He B, Gong Y, Jin J, Yan C, Wang H. Small; 2022 Jul 26; 18(27):e2201792. PubMed ID: 35661404 [Abstract] [Full Text] [Related]
5. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries. Liu Z, Ma S, Mu X, Li R, Yin G, Zuo P. ACS Appl Mater Interfaces; 2021 Mar 17; 13(10):11985-11994. PubMed ID: 33683090 [Abstract] [Full Text] [Related]
8. Macroporous Directed and Interconnected Carbon Architectures Endow Amorphous Silicon Nanodots as Low-Strain and Fast-Charging Anode for Lithium-Ion Batteries. Li Z, Han M, Yu P, Lin J, Yu J. Nanomicro Lett; 2024 Jan 29; 16(1):98. PubMed ID: 38285246 [Abstract] [Full Text] [Related]
9. Mass-Producible, Quasi-Zero-Strain, Lattice-Water-Rich Inorganic Open-Frameworks for Ultrafast-Charging and Long-Cycling Zinc-Ion Batteries. Yang X, Deng W, Chen M, Wang Y, Sun CF. Adv Mater; 2020 Nov 29; 32(45):e2003592. PubMed ID: 33015911 [Abstract] [Full Text] [Related]
11. Fast Energy Storage of SnS2 Anode Nanoconfined in Hollow Porous Carbon Nanofibers for Lithium-Ion Batteries. Liang F, Dong H, Dai J, He H, Zhang W, Chen S, Lv D, Liu H, Kim IS, Lai Y, Tang Y, Ge M. Adv Sci (Weinh); 2024 Jan 29; 11(4):e2306711. PubMed ID: 38041500 [Abstract] [Full Text] [Related]
12. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Son IH, Hwan Park J, Kwon S, Park S, Rümmeli MH, Bachmatiuk A, Song HJ, Ku J, Choi JW, Choi JM, Doo SG, Chang H. Nat Commun; 2015 Jun 25; 6():7393. PubMed ID: 26109057 [Abstract] [Full Text] [Related]
13. Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries. Zhang Z, Wang ZL, Lu X. ACS Nano; 2018 Apr 24; 12(4):3587-3599. PubMed ID: 29630825 [Abstract] [Full Text] [Related]
17. "Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure. Wang R, Wang L, Liu R, Li X, Wu Y, Ran F. ACS Nano; 2024 Jan 30; 18(4):2611-2648. PubMed ID: 38221745 [Abstract] [Full Text] [Related]
19. Carbon-Free, High-Capacity and Long Cycle Life 1D-2D NiMoO4 Nanowires/Metallic 1T MoS2 Composite Lithium-Ion Battery Anodes. Li Z, Zhan X, Zhu W, Qi S, Braun PV. ACS Appl Mater Interfaces; 2019 Nov 27; 11(47):44593-44600. PubMed ID: 31682756 [Abstract] [Full Text] [Related]
20. Slidable and Highly Ionic Conductive Polymer Binder for High-Performance Si Anodes in Lithium-Ion Batteries. Cai Y, Liu C, Yu Z, Ma W, Jin Q, Du R, Qian B, Jin X, Wu H, Zhang Q, Jia X. Adv Sci (Weinh); 2023 Feb 27; 10(6):e2205590. PubMed ID: 36563132 [Abstract] [Full Text] [Related] Page: [Next] [New Search]