These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


324 related items for PubMed ID: 30709363

  • 1. Design, development, and evaluation of a local sensor-based gait phase recognition system using a logistic model decision tree for orthosis-control.
    Farah JD, Baddour N, Lemaire ED.
    J Neuroeng Rehabil; 2019 Feb 01; 16(1):22. PubMed ID: 30709363
    [Abstract] [Full Text] [Related]

  • 2. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T, Lemaire ED, Kofman J.
    Clin Biomech (Bristol); 2006 Dec 01; 21(10):1081-9. PubMed ID: 16949186
    [Abstract] [Full Text] [Related]

  • 3. Design and evaluation of a stance-control knee-ankle-foot orthosis knee joint.
    Yakimovich T, Kofman J, Lemaire ED.
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep 01; 14(3):361-9. PubMed ID: 17009496
    [Abstract] [Full Text] [Related]

  • 4. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.
    Rogozinski BM, Davids JR, Davis RB, Jameson GG, Blackhurst DW.
    J Bone Joint Surg Am; 2009 Oct 01; 91(10):2440-7. PubMed ID: 19797580
    [Abstract] [Full Text] [Related]

  • 5. Gait evaluation of a new electromechanical stance-control knee-ankle-foot orthosis.
    Yakimovich T, Lemaire ED, Kofman J.
    Conf Proc IEEE Eng Med Biol Soc; 2006 Oct 01; 2006():5924-7. PubMed ID: 17946729
    [Abstract] [Full Text] [Related]

  • 6. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.
    Arazpour M, Chitsazan A, Bani MA, Rouhi G, Ghomshe FT, Hutchins SW.
    Prosthet Orthot Int; 2013 Oct 01; 37(5):411-4. PubMed ID: 23327836
    [Abstract] [Full Text] [Related]

  • 7. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.
    Arazpour M, Moradi A, Samadian M, Bahramizadeh M, Joghtaei M, Ahmadi Bani M, Hutchins SW, Mardani MA.
    Prosthet Orthot Int; 2016 Jun 01; 40(3):377-83. PubMed ID: 26184037
    [Abstract] [Full Text] [Related]

  • 8. Design, construction, and evaluation of "sensor lock": an electromechanical stance control knee joint.
    Arazpour M, Ahmadi Bani M, Baniasad M, Samadian M, Golchin N.
    Disabil Rehabil Assist Technol; 2018 Apr 01; 13(3):226-233. PubMed ID: 28350511
    [Abstract] [Full Text] [Related]

  • 9. Safety, walking ability, and satisfaction outcomes of the NEURO TRONIC stance-control knee-ankle-foot orthosis (SCKAFO): A comparative evaluation to the E-MAG active SCKAFO.
    Raijmakers B, Brehm MA, Nollet F, Koopman FS.
    Prosthet Orthot Int; 2024 Jan 01; 48(1):30-38. PubMed ID: 38019018
    [Abstract] [Full Text] [Related]

  • 10. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M, Ahmadi F, Bani MA, Hutchins SW, Bahramizadeh M, Ghomshe FT, Kashani RV.
    Prosthet Orthot Int; 2014 Feb 01; 38(1):39-45. PubMed ID: 23660383
    [Abstract] [Full Text] [Related]

  • 11. Ankle-foot orthosis with dorsiflexion resistance using spring-cam mechanism increases knee flexion in the swing phase during walking in stroke patients with hemiplegia.
    Sekiguchi Y, Owaki D, Honda K, Fukushi K, Hiroi N, Nozaki T, Izumi SI.
    Gait Posture; 2020 Sep 01; 81():27-32. PubMed ID: 32652487
    [Abstract] [Full Text] [Related]

  • 12. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters.
    Schmalz T, Pröbsting E, Auberger R, Siewert G.
    Prosthet Orthot Int; 2016 Apr 01; 40(2):277-86. PubMed ID: 25249381
    [Abstract] [Full Text] [Related]

  • 13. Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis.
    Pröbsting E, Kannenberg A, Zacharias B.
    Prosthet Orthot Int; 2017 Feb 01; 41(1):65-77. PubMed ID: 27151648
    [Abstract] [Full Text] [Related]

  • 14. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC, Bach TM, Pereira DM.
    Prosthet Orthot Int; 2010 Jun 01; 34(2):206-15. PubMed ID: 20470059
    [Abstract] [Full Text] [Related]

  • 15. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr 01; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]

  • 16. Design, construction and evaluation of an electromechanical stance-control knee-ankle-foot orthosis.
    Yakimovich T, Kofman J, Lemaire E.
    Conf Proc IEEE Eng Med Biol Soc; 2005 Apr 01; 2005():2333-40. PubMed ID: 17282703
    [Abstract] [Full Text] [Related]

  • 17. Evaluation of gait symmetry in poliomyelitis subjects: Comparison of a conventional knee-ankle-foot orthosis and a new powered knee-ankle-foot orthosis.
    Arazpour M, Ahmadi F, Bahramizadeh M, Samadian M, Mousavi ME, Bani MA, Hutchins SW.
    Prosthet Orthot Int; 2016 Dec 01; 40(6):689-695. PubMed ID: 26269446
    [Abstract] [Full Text] [Related]

  • 18. Determination of Gait Events and Temporal Gait Parameters for Persons with a Knee-Ankle-Foot Orthosis.
    Yang S, Koo B, Lee S, Jang DJ, Shin H, Choi HJ, Kim Y.
    Sensors (Basel); 2024 Feb 01; 24(3):. PubMed ID: 38339681
    [Abstract] [Full Text] [Related]

  • 19. Engineering design review of stance-control knee-ankle-foot orthoses.
    Yakimovich T, Lemaire ED, Kofman J.
    J Rehabil Res Dev; 2009 Feb 01; 46(2):257-67. PubMed ID: 19533539
    [Abstract] [Full Text] [Related]

  • 20. Design, construction and evaluation of an electromechanical stance-control knee-ankle-foot orthosis.
    Yakimovich T, Kofman J, Lemaire E.
    Conf Proc IEEE Eng Med Biol Soc; 2005 Feb 01; 2005():6934-41. PubMed ID: 17281870
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.