These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
333 related items for PubMed ID: 30709397
1. Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae. Bergman A, Hellgren J, Moritz T, Siewers V, Nielsen J, Chen Y. Microb Cell Fact; 2019 Feb 01; 18(1):25. PubMed ID: 30709397 [Abstract] [Full Text] [Related]
2. Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Papini M, Nookaew I, Siewers V, Nielsen J. Appl Microbiol Biotechnol; 2012 Aug 01; 95(4):1001-10. PubMed ID: 22367611 [Abstract] [Full Text] [Related]
3. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. de Jong BW, Shi S, Siewers V, Nielsen J. Microb Cell Fact; 2014 Mar 12; 13(1):39. PubMed ID: 24618091 [Abstract] [Full Text] [Related]
4. Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae. Bergman A, Siewers V, Nielsen J, Chen Y. AMB Express; 2016 Dec 12; 6(1):115. PubMed ID: 27848233 [Abstract] [Full Text] [Related]
5. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Sonderegger M, Schümperli M, Sauer U. Appl Environ Microbiol; 2004 May 12; 70(5):2892-7. PubMed ID: 15128548 [Abstract] [Full Text] [Related]
6. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Kocharin K, Siewers V, Nielsen J. Biotechnol Bioeng; 2013 Aug 12; 110(8):2216-24. PubMed ID: 23456608 [Abstract] [Full Text] [Related]
7. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. Qin N, Li L, Ji X, Li X, Zhang Y, Larsson C, Chen Y, Nielsen J, Liu Z. ACS Synth Biol; 2020 Dec 18; 9(12):3236-3244. PubMed ID: 33186034 [Abstract] [Full Text] [Related]
11. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production. Gruchattka E, Kayser O. PLoS One; 2015 Dec 18; 10(12):e0144981. PubMed ID: 26701782 [Abstract] [Full Text] [Related]
12. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria. Xiong W, Lee TC, Rommelfanger S, Gjersing E, Cano M, Maness PC, Ghirardi M, Yu J. Nat Plants; 2015 Dec 07; 2():15187. PubMed ID: 27250745 [Abstract] [Full Text] [Related]
16. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase. Kozak BU, van Rossum HM, Niemeijer MS, van Dijk M, Benjamin K, Wu L, Daran JM, Pronk JT, van Maris AJ. FEMS Yeast Res; 2016 Mar 07; 16(2):fow006. PubMed ID: 26818854 [Abstract] [Full Text] [Related]
19. Novel molecular, structural and evolutionary characteristics of the phosphoketolases from bifidobacteria and Coriobacteriales. Gupta RS, Nanda A, Khadka B. PLoS One; 2017 Mar 07; 12(2):e0172176. PubMed ID: 28212383 [Abstract] [Full Text] [Related]